教培參考
教育培訓行業(yè)知識型媒體
發(fā)布時間: 2025年01月13日 19:50
一、平面解析幾何的基本思想和主要問題
平面解析幾何是用代數(shù)的方法研究幾何問題的一門數(shù)學學科,其基本思想就是用代數(shù)的方法研究幾何問題。例如,用直線的方程可以研究直線的性質(zhì),用兩條直線的方程可以研究這兩條直線的位置關(guān)系等。
平面解析幾何研究的問題主要有兩類:一是根據(jù)已知條件,求出表示平面曲線的方程;二是通過方程,研究平面曲線的性質(zhì)。
二、直線坐標系和直角坐標系
直線坐標系,也就是數(shù)軸,它有三個要素:原點、度量單位和方向。如果讓一個實數(shù)與數(shù)軸上坐標為的點對應,那么就可以在實數(shù)集與數(shù)軸上的點集之間建立一一對應關(guān)系。
點與實數(shù)對應,則稱點的坐標為,記作,如點坐標為,則記作;點坐標為,則記為。
直角坐標系是由兩條互相垂直且有公共原點的數(shù)軸組成,兩條數(shù)軸的度量單位一般相同,但有時也可以不同,兩個數(shù)軸的交點是直角坐標系的原點。在平面直角坐標系中,有序?qū)崝?shù)對構(gòu)成的集合與坐標平面內(nèi)的點集具有一一對應關(guān)系。
一個點的坐標是這樣求得的,由點向軸及軸作垂線,在兩坐標軸上形成正投影,在軸上的正投影所對應的值為點的橫坐標,在軸上的正投影所對應的值為點的縱坐標。
在學習這兩種坐標系時,要注意用類比的方法。例如,平面直角坐標系是二維坐標系,它有兩個坐標軸,每個點的坐標需用兩個實數(shù)(即一對有序?qū)崝?shù))來表示,而直線坐標系是一維坐標系,它只有一個坐標軸,每個點的坐標只需用一個實數(shù)來表示。
三、向量的有關(guān)概念和公式
如果數(shù)軸上的任意一點沿著軸的正向或負向移動到另一個點,則說點在軸上作了一次位移。位移是一個既有大小又有方向的量,通常叫做位移向量,簡稱向量,記作。如果點移動的方向與數(shù)軸的正方向相同,則向量為正,否則為負。線段的長叫做向量的長度,記作。向量的長度連同表示其方向的正負號叫做向量的坐標(或數(shù)量),用表示。這里同學們要分清,,三個符號的含義。
對于數(shù)軸上任意三點,都有成立。該等式左邊表示在數(shù)軸上點向點作一次位移,等式右邊表示點先向點作一次位移,再由點向點作一次位移,它們的最終結(jié)果是相同的。
向量的坐標公式(或數(shù)量公式),它表示向量的數(shù)量等于終點的坐標減去起點的坐標,這個公式非常重要。
有相等坐標的兩個向量相等,看做同一個向量;反之,兩個相等向量坐標必相等。
注意:①相等的所有向量看做一個整體,作為同一向量,都等于以原點為起點,坐標與這所有向量相等的那個向量。②向量與數(shù)軸上的實數(shù)(或點)是一一對應的,零向量即原點。
四、兩點的距離公式和中點公式
1。對于數(shù)軸上的兩點,設它們的坐標分別為,,則的距離為,的中點的坐標為。
由于表示數(shù)軸上兩點與的距離,所以在解一些簡單的含絕對值的方程或不等式時,常借助于數(shù)形結(jié)合思想,將問題轉(zhuǎn)化為數(shù)軸上的距離問題加以解決。例如,解方程時,可以將問題看作在數(shù)軸上求一點,使它到,的距離之和等于。
2。對于直角坐標系中的兩點,設它們的坐標分別為,,則兩點的距離為,的中點的坐標滿足。
兩點的距離公式和中點公式是解析幾何中最基本、最常用的公式之一,要求同學們能熟練掌握并能靈活運用。
五、坐標法
坐標法是數(shù)學中一種重要的數(shù)學思想方法,它是借助于坐標系來研究幾何圖形的一種方法,是數(shù)形結(jié)合的典范。這種方法是在平面上建立直角坐標系,用坐標表示點,把曲線看成滿足某種條件的點的集合或軌跡,用曲線上點的坐標所滿足的方程表示曲線,通過研究方程,間接地來研究曲線的性質(zhì)。
本節(jié)內(nèi)容主要是空間點、直線、平面之間的位置關(guān)系,在認識過程中,可以進一步提高同學們的空間想象能力,發(fā)展推理能力.通過對實際模型的認識,學會將文字語言轉(zhuǎn)化為圖形語言和符號語言,以具體的長方體中的點、線、面之間的關(guān)系作為載體,使同學們在直觀感知的基礎上,認識空間中點、線、面之間的位置關(guān)系,點、線、面的位置關(guān)系是立體幾何的主要研究對象,同時也是空間圖形最基本的幾何元素.
重難點知識歸納
1、平面
(1)平面概念的理解
直觀的理解:桌面、黑板面、平靜的水面等等都給人以平面的直觀的印象,但它們都不是平面,而僅僅是平面的一部分.
抽象的理解:平面是平的,平面是無限延展的,平面沒有厚薄.
(2)平面的表示法
①圖形表示法:通常用平行四邊形來表示平面,有時根據(jù)實際需要,也用其他的平面圖形來表示平面.
②字母表示:常用等希臘字母表示平面.
(3)涉及本部分內(nèi)容的符號表示有:
①點A在直線l內(nèi),記作;
②點A不在直線l內(nèi),記作;
③點A在平面內(nèi),記作;
④點A不在平面內(nèi),記作;
⑤直線l在平面內(nèi),記作;
⑥直線l不在平面內(nèi),記作;
注意:符號的使用與集合中這四個符號的使用的區(qū)別與聯(lián)系.
(4)平面的基本性質(zhì)
公理1:如果一條直線的兩個點在一個平面內(nèi),那么這條直線上的所有點都在這個平面內(nèi).
符號表示為:.
注意:如果直線上所有的點都在一個平面內(nèi),我們也說這條直線在這個平面內(nèi),或者稱平面經(jīng)過這條直線.
公理2:過不在一條直線上的三點,有且只有一個平面.
符號表示為:直線AB存在唯一的平面,使得.
注意:“有且只有”的含義是:“有”表示存在,“只有”表示唯一,不能用“只有”來代替.此公理又可表示為:不共線的三點確定一個平面.
公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線.
符號表示為:.
注意:兩個平面有一條公共直線,我們說這兩個平面相交,這條公共直線就叫作兩個平面的交線.若平面、平面相交于直線l,記作.
公理的推論:
推論1:經(jīng)過一條直線和直線外的一點有且只有一個平面.
推論2:經(jīng)過兩條相交直線有且只有一個平面.
推論3:經(jīng)過兩條平行直線有且只有一個平面.
2.空間直線
(1)空間兩條直線的位置關(guān)系
①相交直線:有且僅有一個公共點,可表示為;
②平行直線:在同一個平面內(nèi),沒有公共點,可表示為a//b;
③異面直線:不同在任何一個平面內(nèi),沒有公共點.
(2)平行直線
公理4:平行于同一條直線的兩條直線互相平行.
符號表示為:設a、b、c是三條直線,.
定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等.
(3)兩條異面直線所成的角
注意:
①兩條異面直線a,b所成的角的范圍是(0°,90°].
②兩條異面直線所成的角與點O的選擇位置無關(guān),這可由前面所講過的“等角定理”直接得出.
③由兩條異面直線所成的角的定義可得出異面直線所成角的一般方法:
(i)在空間任取一點,這個點通常是線段的中點或端點.
(ii)分別作兩條異面直線的平行線,這個過程通常采用平移的方法來實現(xiàn).
(iii)指出哪一個角為兩條異面直線所成的角,這時我們要注意兩條異面直線所成的角的范圍.
3.空間直線與平面
直線與平面位置關(guān)系有且只有三種:
(1)直線在平面內(nèi):有無數(shù)個公共點;
(2)直線與平面相交:有且只有一個公共點;
(3)直線與平面平行:沒有公共點.
4.平面與平面
兩個平面之間的位置關(guān)系有且只有以下兩種:
(1)兩個平面平行:沒有公共點;
(2)兩個平面相交:有一條公共直線。
1、高一數(shù)學知識點總結(jié):集合一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大
括號內(nèi)表示集合的方法。{x∈R|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
2、高一數(shù)學知識點總結(jié):集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作A?/B或B?/A
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實例:設A={x|x2
-1=0}B={-1,1}“元素相同則兩集合相等”即:
①任何一個集合是它本身的子集。A?A
②真子集:如果A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)
③如果A?B,B?C,那么A?C
④如果A?B同時B?A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個元素的集合,含有2n個子集,2n-1個真子集,一般我們把不含任何元素的集合叫做空集。
1、集合的概念
集合是集合論中的不定義的原始概念,教材中對集合的概念進行了描述性說明:“一般地,把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構(gòu)成的集合(或集)”。理解這句話,應該把握4個關(guān)鍵詞:對象、確定的、不同的、整體。
對象――即集合中的元素。集合是由它的元素確定的。
整體――集合不是研究某一單一對象的,它關(guān)注的是這些對象的全體。
確定的――集合元素的確定性――元素與集合的“從屬”關(guān)系。
不同的――集合元素的互異性。
2、有限集、無限集、空集的意義
有限集和無限集是針對非空集合來說的。我們理解起來并不困難。
我們把不含有任何元素的集合叫做空集,記做Φ。理解它時不妨思考一下“0與Φ”及“Φ與{Φ}”的關(guān)系。
幾個常用數(shù)集N、N、N+、Z、Q、R要記牢。
3、集合的表示方法
(1)列舉法的表示形式比較容易掌握,并不是所有的集合都能用列舉法表示,同學們需要知道能用列舉法表示的三種集合:
①元素不太多的有限集,如{0,1,8}
②元素較多但呈現(xiàn)一定的規(guī)律的有限集,如{1,2,3,…,100}
③呈現(xiàn)一定規(guī)律的無限集,如{1,2,3,…,n,…}
●注意a與{a}的區(qū)別
●注意用列舉法表示集合時,集合元素的“無序性”。
(2)特征性質(zhì)描述法的關(guān)鍵是把所研究的集合的“特征性質(zhì)”找準,然后適當?shù)乇硎境鰜砭托辛恕5P(guān)鍵點也是難點。學習時多加練習就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三個不同的集合。
4、集合之間的關(guān)系
●注意區(qū)分“從屬”關(guān)系與“包含”關(guān)系
“從屬”關(guān)系是元素與集合之間的關(guān)系。
“包含”關(guān)系是集合與集合之間的關(guān)系。掌握子集、真子集的概念,掌握集合相等的概念,學會正確使用“”等符號,會用Venn圖描述集合之間的關(guān)系是基本要求。
●注意辨清Φ與{Φ}兩種關(guān)系。
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。
直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。直線和平面平行——沒有公共點
直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。
多面體
1、棱柱
棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
(1)側(cè)棱都相等,側(cè)面是平行四邊形
(2)兩個底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側(cè)棱的截面(對角面)是平行四邊形
2、棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質(zhì):
(1)側(cè)棱交于一點。側(cè)面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
3、正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
1.集合的概念
一般地,把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構(gòu)成的集合(或集);構(gòu)成集合的每個對象叫做這個集合的元素(或成員)。集合的元素可以是我們看到的、聽到的、聞到的、觸摸到的、想到的各種各樣的事物或者一些抽象符號。
2.集合元素的特征
由集合概念中的兩個關(guān)鍵詞“確定的”、“不同的”可以知道集合元素有兩大特征性質(zhì):
⑴確定性特征:集合中的元素必須是明確的,不允許出現(xiàn)模棱兩可、無法斷定的陳述。
設集合 給定,若有一具體對象 ,則 要么是 的元素,要么不是 的元素,二者必居
其一,且只居其一。
⑵互異性特征:集合中的元素必須是互不相同的。設集合 給定, 的元素是指含于其中的互不相同的元素,相同的對象歸于同一集合時只能算集合的一個元素。
3.集合與元素之間的關(guān)系
集合與元素之間只有“屬于 ”或“不屬于 ”。例如: 是集合 的元素,記作 ,讀作“ 屬于 ”; 不是集合 的元素,記作 ,讀作“ 不屬于 ”。
4.集合的分類
集合按照元素個數(shù)可以分為有限集和無限集。特殊地,不含任何元素的集合叫做空集,記作 。
5.集合的表示方法
⑴列舉法是把元素不重復、不計順序的一一列舉出來的方法,非常直觀,一目了然。
⑵特征性質(zhì)描述法是用確定的條件描述集合內(nèi)元素特點的集合表示方法。
一.知識歸納:
集合的有關(guān)概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數(shù)集:N,Z,Q,R,N*
子集、交集、并集、補集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)補集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,則? A ;
②若 , ,則 ;
③若 且 ,則A=B(等集)
弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1) 與 、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。
有關(guān)子集的幾個等價關(guān)系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
交、并集運算的性質(zhì)
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
有限子集的個數(shù):設集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
二.例題講解:
【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關(guān)系
A) M=N P B) M N=P C) M N P D) N P M
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對于集合M:{x|x= ,m∈Z};對于集合N:{x|x= ,n∈Z}
對于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以M N=P,故選B。
分析二:簡單列舉集合中的元素。
解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急于判斷三個集合間的關(guān)系,應分析各集合中不同的元素。
= ∈N, ∈N,∴M N,又 = M,∴M N,
= P,∴N P 又 ∈N,∴P N,故P=N,所以選B。
點評:由于思路二只是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設集合 , ,則( B )
N M
解:
當 時,2k+1是奇數(shù),k+2是整數(shù),選B
【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數(shù)為
A)1 B)2 C)3 D)4
分析:確定集合A*B子集的個數(shù),首先要確定元素的個數(shù),然后再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。
解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。
變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個數(shù)為
A)5個 B)6個 C)7個 D)8個
變式2:已知{a,b} A {a,b,c,d,e},求集合
解:由已知,集合中必須含有元素a,
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評析 本題集合A的個數(shù)實為集合{c,d,e}的真子集的個數(shù),所以共有 個 .
【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數(shù)p,q,r的值。
解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,
∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A
∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為-2和1,
∴ ∴
變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數(shù)b,c,m的值.
解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5
∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴
又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1
分析:先化簡集合A,然后由A∪B和A∩B分別確定數(shù)軸上哪些元素屬于B,哪些元素不屬于B。
解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。
綜合以上各式有B={x|-1≤x≤5}
變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)
點評:在解有關(guān)不等式解集一類集合問題,應注意用數(shù)形結(jié)合的方法,作出數(shù)軸來解之。
變式2:設M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={-1,3} , ∵M∩N=N, ∴N M
①當 時,ax-1=0無解,∴a=0 ②
綜①②得:所求集合為{-1,0, }
【例5】已知集合 ,函數(shù)y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠Φ,求實數(shù)a的取值范圍。
分析:先將原問題轉(zhuǎn)化為不等式ax2-2x+2>0在 有解,再利用參數(shù)分離求解。
解答:(1)若 , 在 內(nèi)有有解
令 當 時,
所以a>-4,所以a的取值范圍是
變式:若關(guān)于x的方程 有實根,求實數(shù)a的取值范圍。
解答:
點評:解決含參數(shù)問題的題目,一般要進行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關(guān)鍵。
三.隨堂演練
選擇題
下列八個關(guān)系式①{0}= ② =0 ③ { } ④ { } ⑤{0}
⑥0 ⑦ {0} ⑧ { }其中正確的個數(shù)
(A)4 (B)5 (C)6 (D)7
集合{1,2,3}的真子集共有
(A)5個 (B)6個 (C)7個 (D)8個
集合A={x } B={ } C={ }又 則有
(A)(a+b) A (B) (a+b) B (C)(a+b) C (D) (a+b) A、B、C任一個
設A、B是全集U的兩個子集,且A B,則下列式子成立的是
(A)CUA CUB (B)CUA CUB=U
(C)A CUB= (D)CUA B=
已知集合A={ }, B={ }則A =
(A)R (B){ }
(C){ } (D){ }
下列語句:(1)0與{0}表示同一個集合; (2)由1,2,3組成的集合可表示為
{1,2,3}或{3,2,1}; (3)方程(x-1)2(x-2)2=0的所有解的集合可表示為 {1,1,2}; (4)集合{ }是有限集,正確的是
(A)只有(1)和(4) (B)只有(2)和(3)
(C)只有(2) (D)以上語句都不對
設S、T是兩個非空集合,且S T,T S,令X=S 那么S∪X=
(A)X (B)T (C)Φ (D)S
8設一元二次方程ax2+bx+c=0(a<0)的根的判別式 ,則不等式ax2+bx+c 0的解集為
(A)R (B) (C){ } (D){ }
填空題
在直角坐標系中,坐標軸上的點的集合可表示為
若A={1,4,x},B={1,x2}且A B=B,則x=
若A={x } B={x },全集U=R,則A =
若方程8x2+(k+1)x+k-7=0有兩個負根,則k的取值范圍是
13設集合A={ },B={x },且A B,則實數(shù)k的取值范圍是。
設全集U={x 為小于20的非負奇數(shù)},若A (CUB)={3,7,15},(CUA) B={13,17,19},又(CUA) (CUB)= ,則A B=
解答題
15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1}, 若A B={-3},求實數(shù)a。
16(12分)設A= , B= ,
其中x R,如果A B=B,求實數(shù)a的取值范圍。
四.習題答案
選擇題
1 2 3 4 5 6 7 8
C C B C B C D D
填空題
{(x,y) } , {x ,或x 3} { } { } {1,5,9,11}
解答題
提示:A={0,-4},又A B=B,所以B A
(Ⅰ)B= 時, 4(a+1)2-4(a2-1)<0,得a<-1
(Ⅱ)B={0}或B={-4}時, 0 得a=-1
(Ⅲ)B={0,-4}, 解得a=1
綜上所述實數(shù)a=1 或a -1
#p#副標題#e#高一如何適應高中數(shù)學學習
原因一:
高中數(shù)學與初中數(shù)學相比,難度提高。因此會有少部分新高一生一時無法適應。表現(xiàn)在上課都聽懂,作業(yè)不會做;或即使做出來,老師批改后才知道有多處錯誤,這種現(xiàn)象被戲稱為“一聽就懂,一看就會,一做就錯”。因此有些家長會認為孩子在初中數(shù)學考試都接近滿分,怎么到了高中會考試不及格?!
應對方法:
要透徹理解書本上和課堂上老師補充的內(nèi)容,有時要反復思考、再三研究,要能在理解的基礎上舉一反三,并在勤學的基礎上好問。
原因二:
初、高中不同學習階段對數(shù)學的不同要求所致。高中考試平均分一般要求在70分左右。如果一個班有50名學生,通常會有10個以下不及格,90分以上人數(shù)較少。有些同學和家長不了解這些情況,對初三時的成績接近滿分到高一開始時的不及格這個落差感到不可思議,重點中學的學生及其家長會特別有壓力。
應對方法:
看學生的成績不能僅看分數(shù)值,關(guān)鍵要看在班級或年級的相對位置,同時還要看學生所在學校在全市所處的位置,綜合考慮就會心理平衡,不必要的負擔也就隨之而去。
原因三:
學習方法的不適應。高中數(shù)學與初中相比,內(nèi)容多、進度快、題目難,課堂聽懂作業(yè)卻常??目慕O絆,由于各科信息量都較大,如果不能有效地復習,前學后忘的現(xiàn)象比較嚴重。
應對方法:
課堂上不僅要聽懂,還要把老師補充的內(nèi)容適當?shù)赜浵聛?,課后最好把所學的內(nèi)容消化后再做作業(yè),不要一邊做題一邊看筆記或看公式。課后盡可能再選擇一些相關(guān)問題來練習,以便做到觸類旁通。
原因四:
思想上有所放松。由于初三學習比較辛苦,到高一部分同學會有松口氣的想法,因為離高考畢竟還有三年時間,尤其是初三靠拼命補課突擊上來的部分同學,還指望“重溫舊夢”,這是很危險的想法。如果高一基礎太差,指望高三突擊,實踐表明多數(shù)同學會落空。部分智力較好的男生“恃才傲物”,解題只追求答案的正確性,書寫不規(guī)范,考試時丟分嚴重。
應對方法:
高一的課程內(nèi)容不得懈怠,函數(shù)知識貫穿于高中數(shù)學的始終,函數(shù)思想更是解決許多問題的利器,學好函數(shù)對整個高中數(shù)學都很重要,放松不得。在高一開始時養(yǎng)成勤奮、刻苦的學習態(tài)度,嚴謹、認真的學習習慣和方法非常重要。高中數(shù)學有十幾章內(nèi)容,高一數(shù)學主要是函數(shù),有些同學函數(shù)學得不怎么好,但高二立體幾何、解析幾何卻能學得不錯,因此,一定要用變化的觀點對待學生。鼓勵和自信是永不失效的教育法寶。
先看筆記后做作業(yè)。有的高中學生感到。老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學生對教師所講的內(nèi)容的理解,還沒能達到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區(qū)別。尤其練習題不太配套時,作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。
做題之后加強反思。學生一定要明確,現(xiàn)在正坐著的題,一定不是考試的題目。而是要運用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思??偨Y(jié)一下自己的收獲。要總結(jié)出,這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串,日久天長,構(gòu)建起一個內(nèi)容與方法的科學的網(wǎng)絡系統(tǒng)。
配合老師主動學習。高中學生學習主動性要強。小學生,常常是完成作業(yè)就盡情的歡樂。初中生基本也是如此,聽話的孩子就能學習好。高中則不然,作業(yè)雖多,但是只知道做作業(yè)就絕對不夠;老師的話也不少,但是誰該干些什么了,老師并不一一具體指明,因此,高中學生必須提高自己的學習主動性。準備向?qū)淼拇髮W生的學習方法過渡。
課內(nèi)重視聽講,課后及時復習。新知識的接受,數(shù)學能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內(nèi)的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復5 習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡。
建立良好的學習數(shù)學習慣。習慣是經(jīng)過重復練習而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學習數(shù)學習慣,會使自己學習感到有序而輕松。高中數(shù)學的良好習慣應是:多質(zhì)疑、勤思考、好動手、重歸納、注意應用。學生在學習數(shù)學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養(yǎng)自己再學習能力。適當多做題,養(yǎng)成良好的解題習慣。
(一)
1、集合的含義:
“集合”這個詞首先讓我們想到的是上體育課或者開會時老師經(jīng)常喊的“全體集合”。數(shù)學上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。
所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那么所有高一二班的同學就構(gòu)成了一個集合,每一個同學就稱為這個集合的元素。
2、集合的表示
通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。
有一些特殊的集合需要記憶:
非負整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+
整數(shù)集Z有理數(shù)集Q實數(shù)集R
集合的表示方法:列舉法與描述法。
①列舉法:{a,b,c……}
②描述法:將集合中的元素的公共屬性描述出來。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}
③語言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
強調(diào):描述法表示集合應注意集合的代表元素
A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。
3、集合的三個特性
(1)無序性
指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。
例題:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:該題有兩組解。
(2)互異性
指集合中的元素不能重復,A={2,2}只能表示為{2}
(3)確定性
集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。
(二)
子集,A包含于B,有兩種可能
(1)A是B的一部分,
(2)A與B是同一集合,A=B,A、B兩集合中元素都相同。
反之:集合A不包含于集合B。
不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。
3、有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。
(1)已知圓 .
①若已知切點 在圓上,則切線只有一條,利用垂直關(guān)系求斜率
②過圓外一點的切線方程可設為 ,再利用相切條件求k,這時必有兩條切線,注意不要漏掉平行于y軸的切線.
③斜率為k的切線方程可設為 ,再利用相切條件求b,必有兩條切線.
(2)已知圓 .過圓上的 點的切線方程為
高考數(shù)學知識點:線線平行常用方法總結(jié)
(1)定義:在同一平面內(nèi)沒有公共點的兩條直線是平行直線。
(2)公理:在空間中平行于同一條直線的兩只直線互相平行。
(3)初中所學平面幾何中判斷直線平行的方法
(4)線面平行的性質(zhì):如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面的相交,那么這條直線就和兩平面的交線平行。
(5)線面垂直的性質(zhì):如果兩直線同時垂直于同一平面,那么兩直線平行。
(6)面面平行的性質(zhì):若兩個平行平面同時與第三個平面相交,則它們的交線平行。
高考數(shù)學集合復習錦娘妙計
1、解答集合問題,首先要正確理解集合有關(guān)概念,特別是集合中元素的三要素;對于用描述法給出的集合{x| x?P},要緊緊抓住豎線前面的代表元素x以及它所具有的性質(zhì)P;要重視發(fā)揮圖示法的作用,通過數(shù)形結(jié)合直觀地解決問題。
2、注意空集的特殊性,在解題中,若未能致命集合非空時,要考慮到集合的可能性,如AB,則有A=或A≠兩種可能,此時應分類討論。
集合的含義
集合的中元素的三個特性:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:N+
整數(shù)集:Z
有理數(shù)集:Q
實數(shù)集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{x?R|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合
一.知識歸納:
集合的有關(guān)概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數(shù)集:N,Z,Q,R,N*
子集、交集、并集、補集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)補集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,則? A ;
②若 , ,則 ;
③若 且 ,則A=B(等集)
弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1) 與 、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。
有關(guān)子集的幾個等價關(guān)系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
交、并集運算的性質(zhì)
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
有限子集的個數(shù):設集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
二.例題講解:
【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關(guān)系
A) M=N P B) M N=P C) M N P D) N P M
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對于集合M:{x|x= ,m∈Z};對于集合N:{x|x= ,n∈Z}
對于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以M N=P,故選B。
分析二:簡單列舉集合中的元素。
解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急于判斷三個集合間的關(guān)系,應分析各集合中不同的元素。
= ∈N, ∈N,∴M N,又 = M,∴M N,
= P,∴N P 又 ∈N,∴P N,故P=N,所以選B。
點評:由于思路二只是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設集合 , ,則( B )
N M
解:
當 時,2k+1是奇數(shù),k+2是整數(shù),選B
【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數(shù)為
A)1 B)2 C)3 D)4
分析:確定集合A*B子集的個數(shù),首先要確定元素的個數(shù),然后再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。
解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。
變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個數(shù)為
A)5個 B)6個 C)7個 D)8個
變式2:已知{a,b} A {a,b,c,d,e},求集合
解:由已知,集合中必須含有元素a,
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評析 本題集合A的個數(shù)實為集合{c,d,e}的真子集的個數(shù),所以共有 個 .
【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數(shù)p,q,r的值。
解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,
∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A
∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為-2和1,
∴ ∴
變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數(shù)b,c,m的值.
解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5
∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴
又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1
分析:先化簡集合A,然后由A∪B和A∩B分別確定數(shù)軸上哪些元素屬于B,哪些元素不屬于B。
解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。
綜合以上各式有B={x|-1≤x≤5}
變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)
點評:在解有關(guān)不等式解集一類集合問題,應注意用數(shù)形結(jié)合的方法,作出數(shù)軸來解之。
變式2:設M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={-1,3} , ∵M∩N=N, ∴N M
①當 時,ax-1=0無解,∴a=0 ②
綜①②得:所求集合為{-1,0, }
【例5】已知集合 ,函數(shù)y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠Φ,求實數(shù)a的取值范圍。
分析:先將原問題轉(zhuǎn)化為不等式ax2-2x+2>0在 有解,再利用參數(shù)分離求解。
解答:(1)若 , 在 內(nèi)有有解
令 當 時,
所以a>-4,所以a的取值范圍是
變式:若關(guān)于x的方程 有實根,求實數(shù)a的取值范圍。
解答:
點評:解決含參數(shù)問題的題目,一般要進行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關(guān)鍵。
三.隨堂演練
選擇題
下列八個關(guān)系式①{0}= ② =0 ③ { } ④ { } ⑤{0}
⑥0 ⑦ {0} ⑧ { }其中正確的個數(shù)
(A)4 (B)5 (C)6 (D)7
集合{1,2,3}的真子集共有
(A)5個 (B)6個 (C)7個 (D)8個
集合A={x } B={ } C={ }又 則有
(A)(a+b) A (B) (a+b) B (C)(a+b) C (D) (a+b) A、B、C任一個
設A、B是全集U的兩個子集,且A B,則下列式子成立的是
(A)CUA CUB (B)CUA CUB=U
(C)A CUB= (D)CUA B=
已知集合A={ }, B={ }則A =
(A)R (B){ }
(C){ } (D){ }
下列語句:(1)0與{0}表示同一個集合; (2)由1,2,3組成的集合可表示為
{1,2,3}或{3,2,1}; (3)方程(x-1)2(x-2)2=0的所有解的集合可表示為 {1,1,2}; (4)集合{ }是有限集,正確的是
(A)只有(1)和(4) (B)只有(2)和(3)
(C)只有(2) (D)以上語句都不對
設S、T是兩個非空集合,且S T,T S,令X=S 那么S∪X=
(A)X (B)T (C)Φ (D)S
8設一元二次方程ax2+bx+c=0(a<0)的根的判別式 ,則不等式ax2+bx+c 0的解集為
(A)R (B) (C){ } (D){ }
填空題
在直角坐標系中,坐標軸上的點的集合可表示為
若A={1,4,x},B={1,x2}且A B=B,則x=
若A={x } B={x },全集U=R,則A =
若方程8x2+(k+1)x+k-7=0有兩個負根,則k的取值范圍是
13設集合A={ },B={x },且A B,則實數(shù)k的取值范圍是。
設全集U={x 為小于20的非負奇數(shù)},若A (CUB)={3,7,15},(CUA) B={13,17,19},又(CUA) (CUB)= ,則A B=
解答題
15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1}, 若A B={-3},求實數(shù)a。
16(12分)設A= , B= ,
其中x R,如果A B=B,求實數(shù)a的取值范圍。
四.習題答案
選擇題
1 2 3 4 5 6 7 8
C C B C B C D D
填空題
{(x,y) } , {x ,或x 3} { } { } {1,5,9,11}
解答題
提示:A={0,-4},又A B=B,所以B A
(Ⅰ)B= 時, 4(a+1)2-4(a2-1)<0,得a<-1
(Ⅱ)B={0}或B={-4}時, 0 得a=-1
(Ⅲ)B={0,-4}, 解得a=1
綜上所述實數(shù)a=1 或a -1
#p#副標題#e#高一如何適應高中數(shù)學學習
原因一:
高中數(shù)學與初中數(shù)學相比,難度提高。因此會有少部分新高一生一時無法適應。表現(xiàn)在上課都聽懂,作業(yè)不會做;或即使做出來,老師批改后才知道有多處錯誤,這種現(xiàn)象被戲稱為“一聽就懂,一看就會,一做就錯”。因此有些家長會認為孩子在初中數(shù)學考試都接近滿分,怎么到了高中會考試不及格?!
應對方法:
要透徹理解書本上和課堂上老師補充的內(nèi)容,有時要反復思考、再三研究,要能在理解的基礎上舉一反三,并在勤學的基礎上好問。
原因二:
初、高中不同學習階段對數(shù)學的不同要求所致。高中考試平均分一般要求在70分左右。如果一個班有50名學生,通常會有10個以下不及格,90分以上人數(shù)較少。有些同學和家長不了解這些情況,對初三時的成績接近滿分到高一開始時的不及格這個落差感到不可思議,重點中學的學生及其家長會特別有壓力。
應對方法:
看學生的成績不能僅看分數(shù)值,關(guān)鍵要看在班級或年級的相對位置,同時還要看學生所在學校在全市所處的位置,綜合考慮就會心理平衡,不必要的負擔也就隨之而去。
原因三:
學習方法的不適應。高中數(shù)學與初中相比,內(nèi)容多、進度快、題目難,課堂聽懂作業(yè)卻常常磕磕絆絆,由于各科信息量都較大,如果不能有效地復習,前學后忘的現(xiàn)象比較嚴重。
應對方法:
課堂上不僅要聽懂,還要把老師補充的內(nèi)容適當?shù)赜浵聛?,課后最好把所學的內(nèi)容消化后再做作業(yè),不要一邊做題一邊看筆記或看公式。課后盡可能再選擇一些相關(guān)問題來練習,以便做到觸類旁通。
原因四:
思想上有所放松。由于初三學習比較辛苦,到高一部分同學會有松口氣的想法,因為離高考畢竟還有三年時間,尤其是初三靠拼命補課突擊上來的部分同學,還指望“重溫舊夢”,這是很危險的想法。如果高一基礎太差,指望高三突擊,實踐表明多數(shù)同學會落空。部分智力較好的男生“恃才傲物”,解題只追求答案的正確性,書寫不規(guī)范,考試時丟分嚴重。
應對方法:
高一的課程內(nèi)容不得懈怠,函數(shù)知識貫穿于高中數(shù)學的始終,函數(shù)思想更是解決許多問題的利器,學好函數(shù)對整個高中數(shù)學都很重要,放松不得。在高一開始時養(yǎng)成勤奮、刻苦的學習態(tài)度,嚴謹、認真的學習習慣和方法非常重要。高中數(shù)學有十幾章內(nèi)容,高一數(shù)學主要是函數(shù),有些同學函數(shù)學得不怎么好,但高二立體幾何、解析幾何卻能學得不錯,因此,一定要用變化的觀點對待學生。鼓勵和自信是永不失效的教育法寶。
任一x?A,x?B,記做AB
AB,BAA=B
AB={x|x?A,且x?B}
AB={x|x?A,或x?B}
Card(AB)=card(A)+card(B)-card(AB)
(1)命題
原命題若p則q
逆命題若q則p
否命題若p則q
逆否命題若q,則p
(2)AB,A是B成立的充分條件
BA,A是B成立的必要條件
AB,A是B成立的充要條件
集合元素具有①確定性;②互異性;③無序性
集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法
(3)集合的運算
①A∩(B∪C)=(A∩B)∪(A∩C)
②Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性質(zhì)
n元集合的字集數(shù):2n
真子集數(shù):2n-1;
非空真子集數(shù):2n-2
(1)已知圓 .
①若已知切點 在圓上,則切線只有一條,利用垂直關(guān)系求斜率
②過圓外一點的切線方程可設為 ,再利用相切條件求k,這時必有兩條切線,注意不要漏掉平行于y軸的切線.
③斜率為k的切線方程可設為 ,再利用相切條件求b,必有兩條切線.
(2)已知圓 .過圓上的 點的切線方程為
高考數(shù)學知識點:線線平行常用方法總結(jié)
(1)定義:在同一平面內(nèi)沒有公共點的兩條直線是平行直線。
(2)公理:在空間中平行于同一條直線的兩只直線互相平行。
(3)初中所學平面幾何中判斷直線平行的方法
(4)線面平行的性質(zhì):如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面的相交,那么這條直線就和兩平面的交線平行。
(5)線面垂直的性質(zhì):如果兩直線同時垂直于同一平面,那么兩直線平行。
(6)面面平行的性質(zhì):若兩個平行平面同時與第三個平面相交,則它們的交線平行。
高考數(shù)學集合復習錦娘妙計
1、解答集合問題,首先要正確理解集合有關(guān)概念,特別是集合中元素的三要素;對于用描述法給出的集合{x| x?P},要緊緊抓住豎線前面的代表元素x以及它所具有的性質(zhì)P;要重視發(fā)揮圖示法的作用,通過數(shù)形結(jié)合直觀地解決問題。
2、注意空集的特殊性,在解題中,若未能致命集合非空時,要考慮到集合的可能性,如AB,則有A=或A≠兩種可能,此時應分類討論。
“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個集合是它本身的子集。A?A
②真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)
③如果A?B,B?C,那么A?C
④如果A?B同時B?A那么A=B
不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
子集個數(shù):
有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集
高一數(shù)學集合知識點總結(jié)
集合作為高中學習的關(guān)鍵,需要學生鞏固并且掌握好。下面是小編為大家搜集整理出來的有關(guān)于高一數(shù)學集合知識點總結(jié),希望可以幫助到大家!
一.知識歸納:
1.集合的有關(guān)概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數(shù)集:N,Z,Q,R,N*
2.子集、交集、并集、補集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)補集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,則? A ;
②若 , ,則 ;
③若 且 ,則A=B(等集)
3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1) 與 、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。
4.有關(guān)子集的幾個等價關(guān)系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、并集運算的性質(zhì)
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6.有限子集的個數(shù):設集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
二.例題講解:
【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關(guān)系
A) M=N P B) M N=P C) M N P D) N P M
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對于集合M:{x|x= ,m∈Z};對于集合N:{x|x= ,n∈Z}
對于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的.數(shù),所以M N=P,故選B。
分析二:簡單列舉集合中的元素。
解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急于判斷三個集合間的關(guān)系,應分析各集合中不同的元素。
= ∈N, ∈N,∴M N,又 = M,∴M N。
= P,∴N P 又 ∈N,∴P N,故P=N,所以選B。
點評:由于思路二只是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設集合 , ,則( B )
A.M=N B.M N C.N M D.
解:
當 時,2k+1是奇數(shù),k+2是整數(shù),選B
【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數(shù)為
A)1 B)2 C)3 D)4
分析:確定集合A*B子集的個數(shù),首先要確定元素的個數(shù),然后再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。
解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。
變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個數(shù)為
A)5個 B)6個 C)7個 D)8個
變式2:已知{a,b} A {a,b,c,d,e},求集合A.
解:由已知,集合中必須含有元素a,b.
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評析 本題集合A的個數(shù)實為集合{c,d,e}的真子集的個數(shù),所以共有 個 .
【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數(shù)p,q,r的值。
解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.
∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A
∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為-2和1。
∴ ∴
變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數(shù)b,c,m的值.
解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5
∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴
又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1
分析:先化簡集合A,然后由A∪B和A∩B分別確定數(shù)軸上哪些元素屬于B,哪些元素不屬于B。
解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。
綜合以上各式有B={x|-1≤x≤5}
變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)
點評:在解有關(guān)不等式解集一類集合問題,應注意用數(shù)形結(jié)合的方法,作出數(shù)軸來解之。
變式2:設M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={-1,3} , ∵M∩N=N, ∴N M
①當 時,ax-1=0無解,∴a=0 ②
綜①②得:所求集合為{-1,0, }
【例5】已知集合 ,函數(shù)y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠Φ,求實數(shù)a的取值范圍。
分析:先將原問題轉(zhuǎn)化為不等式ax2-2x+2>0在 有解,再利用參數(shù)分離求解。
解答:(1)若 , 在 內(nèi)有有解
令 當 時。
所以a>-4,所以a的取值范圍是
變式:若關(guān)于x的方程 有實根,求實數(shù)a的取值范圍。
解答:
點評:解決含參數(shù)問題的題目,一般要進行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關(guān)鍵。
三.隨堂演練
選擇題
1. 下列八個關(guān)系式①{0}= ② =0 ③ { } ④ { } ⑤{0}
⑥0 ⑦ {0} ⑧ { }其中正確的個數(shù)
(A)4 (B)5 (C)6 (D)7
2.集合{1,2,3}的真子集共有
(A)5個 (B)6個 (C)7個 (D)8個
3.集合A={x } B={ } C={ }又 則有
(A)(a+b) A (B) (a+b) B (C)(a+b) C (D) (a+b) A、B、C任一個
4.設A、B是全集U的兩個子集,且A B,則下列式子成立的是
(A)CUA CUB (B)CUA CUB=U
(C)A CUB= (D)CUA B=
5.已知集合A={ }, B={ }則A =
(A)R (B){ }
(C){ } (D){ }
6.下列語句:(1)0與{0}表示同一個集合; (2)由1,2,3組成的集合可表示為
{1,2,3}或{3,2,1}; (3)方程(x-1)2(x-2)2=0的所有解的集合可表示為 {1,1,2}; (4)集合{ }是有限集,正確的是
(A)只有(1)和(4) (B)只有(2)和(3)
(C)只有(2) (D)以上語句都不對
7.設S、T是兩個非空集合,且S T,T S,令X=S 那么S∪X=
(A)X (B)T (C)Φ (D)S
8設一元二次方程ax2+bx+c=0(a<0)的根的判別式 ,則不等式ax2+bx+c 0的解集為
(A)R (B) (C){ } (D){ }
填空題
9.在直角坐標系中,坐標軸上的點的集合可表示為
10.若A={1,4,x},B={1,x2}且A B=B,則x=
11.若A={x } B={x },全集U=R,則A =
12.若方程8x2+(k+1)x+k-7=0有兩個負根,則k的取值范圍是
13設集合A={ },B={x },且A B,則實數(shù)k的取值范圍是。
14.設全集U={x 為小于20的非負奇數(shù)},若A (CUB)={3,7,15},(CUA) B={13,17,19},又(CUA) (CUB)= ,則A B=
解答題
15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1}, 若A B={-3},求實數(shù)a。
16(12分)設A= , B= 。
其中x R,如果A B=B,求實數(shù)a的取值范圍。
四.習題答案
選擇題
1 2 3 4 5 6 7 8
C C B C B C D D
填空題
9.{(x,y) } 10.0, 11.{x ,或x 3} 12.{ } 13.{ } 14.{1,5,9,11}
解答題
15.a=-1
16.提示:A={0,-4},又A B=B,所以B A
(Ⅰ)B= 時, 4(a+1)2-4(a2-1)<0,得a<-1
(Ⅱ)B={0}或B={-4}時, 0 得a=-1
(Ⅲ)B={0,-4}, 解得a=1
綜上所述實數(shù)a=1 或a -1
【微語】那個城市,載滿了我們的回憶。