培訓(xùn)啦 考試資料 > 教學(xué)設(shè)計(jì)

函數(shù)的圖像教學(xué)設(shè)計(jì)(集合4篇)

教培參考

教育培訓(xùn)行業(yè)知識(shí)型媒體

發(fā)布時(shí)間: 2024年12月26日 21:29

函數(shù)的圖像教學(xué)設(shè)計(jì)(1)

一、教材分析

反比例函數(shù)是初中階段所要學(xué)習(xí)的三種函數(shù)中的一種,是一類比較簡(jiǎn)單但很重要的函數(shù),現(xiàn)實(shí)生活中充滿了反比例函數(shù)的例子。因此反比例函數(shù)的概念與意義的教學(xué)是基礎(chǔ)。

二、學(xué)情分析

由于之前學(xué)習(xí)過函數(shù),學(xué)生對(duì)函數(shù)概念已經(jīng)有了一定的認(rèn)識(shí)能力,另外在前一章我們學(xué)習(xí)過分式的知識(shí),因此為本節(jié)課的教學(xué)奠定的一定的基礎(chǔ)。

三、教學(xué)目標(biāo)

知識(shí)目標(biāo):理解反比例函數(shù)意義;能夠根據(jù)已知條件確定反比例函數(shù)的表達(dá)式.

解決問題:能從實(shí)際問題中抽象出反比例函數(shù)并確定其表達(dá)式. 情感態(tài)度:讓學(xué)生經(jīng)歷從實(shí)際問題中抽象出反比例函數(shù)模型的過程,體會(huì)反比例函數(shù)來源于實(shí)際.

四、教學(xué)重難點(diǎn)

重點(diǎn):理解反比例函數(shù)意義,確定反比例函數(shù)的表達(dá)式.

難點(diǎn):反比例函數(shù)表達(dá)式的確立.

五、教學(xué)過程

(1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運(yùn)行時(shí)間t(單位:h)的變化而變化;

(2)某住宅小區(qū)要種植一個(gè)面積1000m2的矩形草坪,草坪的長(zhǎng)y(單

位:m)隨寬x(單位:m)的變化而變化。

請(qǐng)同學(xué)們寫出上述函數(shù)的表達(dá)式

14631000(2)y= tx

k可知:形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù),其中xx(1)v=

是自變量,y是函數(shù)。

此過程的目的在于讓學(xué)生從實(shí)際問題中抽象出反比例函數(shù)模型的過程,體會(huì)反比例函數(shù)來源于實(shí)際. 由于是分式,當(dāng)x=0時(shí),分式無意義,所以x≠0。

當(dāng)y= 中k=0時(shí),y=0,函數(shù)y是一個(gè)常數(shù),通常我們把這樣的函數(shù)稱為常函數(shù)。此時(shí)y就不是反比例函數(shù)了。

舉例:下列屬于反比例函數(shù)的是

(1)y= (2)xy=10 (3)y=k-1x (4)y= -

此過程的目的是通過分析與練習(xí)讓學(xué)生更加了解反比例函數(shù)的概念 問已知y與x成反比例,y與x-1成反比例,y+1與x成反比例,y+1與x-1成反比例,將如何設(shè)其解析式(函數(shù)關(guān)系式)

已知y與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=

k x?1

k已知y+1與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= xkxkxkxkx2x已知y與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=

已知y+1與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= k x?1此過程的目的是為了讓學(xué)生更深刻的了解反比例函數(shù)的概念,為以后在求函數(shù)解析式做好鋪墊。

例:已知y與x2反比例,并且當(dāng)x=3時(shí)y=4

(1)求出y和x之間的函數(shù)解析式

(2)求當(dāng)x=1.5時(shí)y的值

解析:因?yàn)閥與x2反比例,所以設(shè)y?k,只要將k求出即可得到y(tǒng)x2

和x之間的函數(shù)解析式。之后引導(dǎo)學(xué)生書寫過程。能從實(shí)際問題中抽象出反比例函數(shù)并確定其表達(dá)式最后學(xué)生練習(xí)并布置作業(yè)

通過此環(huán)節(jié),加深對(duì)本節(jié)課所內(nèi)容的認(rèn)識(shí),以達(dá)到鞏固的目的。

六、評(píng)價(jià)與反思

本節(jié)課是在學(xué)生現(xiàn)有的認(rèn)識(shí)基礎(chǔ)上進(jìn)行講解,便于學(xué)生理解反比例函數(shù)的概念。而本節(jié)課的重點(diǎn)在于理解反比例函數(shù)意義,確定反比例函數(shù)的表達(dá)式.應(yīng)該對(duì)這一方面的內(nèi)容多練習(xí)鞏固。

函數(shù)的圖像教學(xué)設(shè)計(jì)(2)

一、知識(shí)與技能

1.從現(xiàn)實(shí)情境和已有的知識(shí)、經(jīng)驗(yàn)出發(fā)、討論兩個(gè)變量之間的相依關(guān)系,加深對(duì)函數(shù)、函數(shù)概念的理解.

2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.

二、過程與方法

1.經(jīng)歷對(duì)兩個(gè)變量之間相依關(guān)系的討論,培養(yǎng)學(xué)生的'辨別唯物主義觀點(diǎn).

2.經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展學(xué)生的抽象思維能力,提高數(shù)學(xué)化意識(shí).

三、情感態(tài)度與價(jià)值觀

1.經(jīng)歷抽象反比例函數(shù)概念的過程,體會(huì)數(shù)學(xué)學(xué)習(xí)的重要性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣.

2.通過分組討論,培養(yǎng)學(xué)生合作交流意識(shí)和探索精神.

教學(xué)重點(diǎn):

理解和領(lǐng)會(huì)反比例函數(shù)的概念.

教學(xué)難點(diǎn):

領(lǐng)悟反比例的概念.

教學(xué)過程:

一、創(chuàng)設(shè)情境,導(dǎo)入新課

活動(dòng)1

問題:下列問題中,變量間的對(duì)應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點(diǎn)?

(1)京滬線鐵路全程為1463km,乘坐某次列車所用時(shí)間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;

(2)某住宅小區(qū)要種植一個(gè)面積為1000m2的矩形草坪,草坪的長(zhǎng)為y隨寬x的變化;

(3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.

師生行為:

先讓學(xué)生進(jìn)行小組合作交流,再進(jìn)行全班性的問答或交流.學(xué)生用自己的語言說明兩個(gè)變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達(dá)形式.

教師組織學(xué)生討論,提問學(xué)生,師生互動(dòng).

在此活動(dòng)中老師應(yīng)重點(diǎn)關(guān)注學(xué)生:

①能否積極主動(dòng)地合作交流.

②能否用語言說明兩個(gè)變量間的關(guān)系.

③能否了解所討論的函數(shù)表達(dá)形式,形成反比例函數(shù)概念的具體形象.

分析及解答:(1);(2);(3)

其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);

上面的函數(shù)關(guān)系式,都具有的形式,其中k是常數(shù).

二、聯(lián)系生活,豐富聯(lián)想

活動(dòng)2

下列問題中,變量間的對(duì)應(yīng)關(guān)系可用這樣的函數(shù)式表示?

(1)一個(gè)游泳池的容積為2000m3,注滿游泳池所用的時(shí)間隨注水速度u的變化而變化;

(2)某立方體的體積為1000cm3,立方體的高h(yuǎn)隨底面積S的變化而變化;

(3)一個(gè)物體重100牛頓,物體對(duì)地面的壓力p隨物體與地面的接觸面積S的變化而變化.

師生行為

學(xué)生先獨(dú)立思考,在進(jìn)行全班交流.

教師操作課件,提出問題,關(guān)注學(xué)生思考的過程,在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:

(1)能否從現(xiàn)實(shí)情境中抽象出兩個(gè)變量的函數(shù)關(guān)系;

(2)能否積極主動(dòng)地參與小組活動(dòng);

(3)能否比較深刻地領(lǐng)會(huì)函數(shù)、反比例函數(shù)的概念.

分析及解答:(1);(2);(3)

概念:如果兩個(gè)變量x,y之間的關(guān)系可以表示成的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.

活動(dòng)3

做一做:

一個(gè)矩形的面積為20cm2, 相鄰的兩條邊長(zhǎng)為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

師生行為:

學(xué)生先進(jìn)行獨(dú)立思考,再進(jìn)行全班交流.教師提出問題,關(guān)注學(xué)生思考.此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:

①生能否理解反比例函數(shù)的意義,理解反比例函數(shù)的概念;

②學(xué)生能否順利抽象反比例函數(shù)的模型;

③學(xué)生能否積極主動(dòng)地合作、交流;

活動(dòng)4

問題1:下列哪個(gè)等式中的y是x的反比例函數(shù)?

問題2:已知y是x的反比例函數(shù),當(dāng)x=2時(shí),y=6

(1)寫出y與x的函數(shù)關(guān)系式:

(2)求當(dāng)x=4時(shí),y的值.

師生行為:

學(xué)生獨(dú)立思考,然后小組合作交流.教師巡視,查看學(xué)生完成的情況,并給予及時(shí)引導(dǎo).在此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:

①學(xué)生能否領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念;

②學(xué)生能否積極主動(dòng)地參與小組活動(dòng).

分析及解答:

1.只有xy=123是反比例函數(shù).

2.分析:因?yàn)閥是x的反比例函數(shù),所以,再把x=2和y=6代入上式就可求出常數(shù)k的值.

解:(1)設(shè),因?yàn)閤=2時(shí),y=6,所以有解得k=12

三、鞏固提高

活動(dòng)5

1.已知y是x的反比例函數(shù),并且當(dāng)x=3時(shí),y= ?8.

(1)寫出y與x之間的函數(shù)關(guān)系式.

(2)求y=2時(shí)x的值.

2.y是x的反比例函數(shù),下表給出了x與y的一些值:

(1)寫出這個(gè)反比例函數(shù)的表達(dá)式;

(2)根據(jù)函數(shù)表達(dá)式完成上表.

學(xué)生獨(dú)立練習(xí),而后再與同桌交流,上講臺(tái)演示,教師要重點(diǎn)關(guān)注“學(xué)困生”.

四、課時(shí)小結(jié)

反比例函數(shù)概念形成的過程中,大家充分利用已有的生活經(jīng)驗(yàn)和背景知識(shí),注意挖掘問題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解.在概念的形成過程中,從感性認(rèn)識(shí)到理發(fā)認(rèn)識(shí)一旦建立概念,即已擺脫其原型成為數(shù)學(xué)對(duì)象.反比例函數(shù)具有豐富的數(shù)學(xué)含義,通過舉例、說理、討論等活動(dòng),感知數(shù)學(xué)眼光,審視某些實(shí)際現(xiàn)象.

函數(shù)的圖像教學(xué)設(shè)計(jì)(3)

二次函數(shù)的性質(zhì)和圖像教學(xué)設(shè)計(jì)

一、教學(xué)內(nèi)容分析

本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教B版)第二章第二節(jié)第二課(2.2.2)《二次函數(shù)的性質(zhì)與圖象》。關(guān)于《二次函數(shù)的性質(zhì)與圖象》在初中已經(jīng)學(xué)習(xí)過,根據(jù)我所任教的學(xué)生的實(shí)際情況,我將《二次函數(shù)的性質(zhì)與圖象》設(shè)定為一節(jié)課(探究圖象及其性質(zhì))。二次函數(shù)是重要的基本初等函數(shù)之一,作為常見函數(shù),它不僅是今后學(xué)習(xí)其他初等函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以二次函數(shù)應(yīng)重點(diǎn)研究。

二、學(xué)生學(xué)習(xí)況情分析

二次函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,是學(xué)生對(duì)函數(shù)概念及性質(zhì)的又一次應(yīng)用?;谠诔踔薪滩牡膶W(xué)習(xí)中已經(jīng)給出了二次函數(shù)的圖象及性質(zhì),已經(jīng)讓學(xué)生掌握了二次函數(shù)的圖象及一些性質(zhì),只是像單調(diào)性、對(duì)稱性、零點(diǎn)這種性質(zhì)還沒有規(guī)范,課本給出的三個(gè)例題對(duì)于學(xué)生來說非常熟悉。本節(jié)課需要認(rèn)真設(shè)計(jì)問題來激發(fā)學(xué)生學(xué)習(xí)新知的興趣和欲望。

三、設(shè)計(jì)思想

1.函數(shù)及其圖象在高中數(shù)學(xué)中占有很重要的位置。如何突破這個(gè)既重要又抽象的內(nèi)容,其實(shí)質(zhì)就是將抽象的符號(hào)語言與直觀的圖象語言有機(jī)的結(jié)合起來,通過具有一定思考價(jià)值的問題,激發(fā)學(xué)生的求知欲望――持久的好奇心。我們知道,函數(shù)的表示法有三種:列表法、圖象法、解析法,以往的函數(shù)的學(xué)習(xí)大多只關(guān)注到圖象的作用,這其實(shí)只是借助了圖象的直觀性,只是從一個(gè)角度看函數(shù),是片面的。本節(jié)課,力圖讓學(xué)生從不同的角度去研究函數(shù),對(duì)函數(shù)進(jìn)行一個(gè)全方位的研究,并通過對(duì)比總結(jié)得到研究的方法,讓學(xué)生去體會(huì)這種研究方法,以便能將其遷移到其他函數(shù)的研究中去。

2.結(jié)合新課程實(shí)施的教學(xué)理念,在本課的教學(xué)中我努力實(shí)踐以下兩點(diǎn):

(1)在課堂活動(dòng)中通過同伴合作、自主探究嘗試培養(yǎng)學(xué)生積極主動(dòng)、勇于探索的學(xué)習(xí)方式。

(2)在教學(xué)過程中努力做到師生的互動(dòng),并且在對(duì)話之后重視體會(huì)、總結(jié)、反思,力圖在培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)素養(yǎng)的同時(shí)讓學(xué)生掌握一些學(xué)習(xí)、研究數(shù)學(xué)的方法。

(3)通過課堂教學(xué)活動(dòng)向?qū)W生滲透數(shù)學(xué)思想方法。

四、教學(xué)目標(biāo)

根據(jù)任教班級(jí)學(xué)生的實(shí)際情況,本節(jié)課我確定的教學(xué)目標(biāo)是:

1、知識(shí)與技能:掌握二次函數(shù)的圖象與性質(zhì),能夠借助于具體的二次函數(shù)應(yīng)用所學(xué)知識(shí)解決簡(jiǎn)單的函數(shù)問題,理解和掌握從不同的角度研究函數(shù)的性質(zhì)與圖象的方法。

2、過程與方法:通過老師的引導(dǎo)、點(diǎn)撥,讓學(xué)生在分組合作、積極探索的氛圍中,通過回顧歸納,類比分析的方法掌握從函數(shù)圖象出發(fā)研究函數(shù)性質(zhì)和從函數(shù)解析式性質(zhì)去研究函數(shù)圖象這兩種從不同角度研究函數(shù)的數(shù)學(xué)方法,加深對(duì)函數(shù)概念的理解和研究函數(shù)的方法的認(rèn)識(shí)。

3、情感、態(tài)度、價(jià)值觀:讓學(xué)生在數(shù)學(xué)活動(dòng)中感受數(shù)學(xué)思想方法之美、體會(huì)數(shù)學(xué)思想方法之重要;同時(shí)通過本節(jié)課的學(xué)習(xí),使學(xué)生獲得研究函數(shù)的規(guī)律和方法;培養(yǎng)學(xué)生主動(dòng)學(xué)習(xí)、合作交流的意識(shí)。

五、教學(xué)重點(diǎn)與難點(diǎn)

教學(xué)重點(diǎn):使學(xué)生掌握二次函數(shù)的概念、圖象和性質(zhì);熟悉從不同的角度研究函數(shù)的性質(zhì)與圖象的方法。

教學(xué)難點(diǎn):借助于二次函數(shù)的解析式通過配方對(duì)函數(shù)性質(zhì)的研究來分析推斷二次函數(shù)的圖象。

六、教學(xué)過程:

(一)創(chuàng)設(shè)情景、提出問題

本節(jié)課一開始我就讓學(xué)生直接總結(jié)出二次函數(shù)的性質(zhì)與圖象,并指出如何得到函數(shù)的相關(guān)性質(zhì)。學(xué)生在初中學(xué)習(xí)的基礎(chǔ)上很容易就完成。就在學(xué)生回答后,教師提出一個(gè)讓大家意想不到的問題:既然大家已經(jīng)學(xué)習(xí)也掌握了二次函數(shù)的圖象和性質(zhì),那我們今天還有必要再重復(fù)嗎?編者的失誤?還是另有用意呢?

【設(shè)計(jì)意圖:一方面可以激發(fā)學(xué)生學(xué)習(xí)熱情和探索新知的欲望;另一方面也給學(xué)生傳遞一個(gè)學(xué)習(xí)目標(biāo)方面的信息。在學(xué)生感覺很疑惑的時(shí)候,教師再次設(shè)問,把問題引向深入?!?/p>

【學(xué)情預(yù)設(shè):學(xué)生可能很疑惑,或者有一些猜測(cè)】

你能獨(dú)立完成問題2嗎?

問題2:試作出二次函數(shù)的圖象。

要求學(xué)生按照自己處理二次函數(shù)的方法獨(dú)立完成。

【設(shè)計(jì)意圖:充分暴露學(xué)生的問題,突出本節(jié)課的重要性,激發(fā)學(xué)生學(xué)習(xí)的動(dòng)力?!?/p>

【學(xué)情預(yù)設(shè):一部分學(xué)生使用描點(diǎn)法作圖;另一部分學(xué)生只確定對(duì)稱軸和開口、只利用對(duì)稱軸和y軸的交點(diǎn)等不是很規(guī)范的方法作圖?!?/p>

在總結(jié)交流的基礎(chǔ)上教師指出:有的同學(xué)用描點(diǎn)作圖的方法作出函數(shù)的圖象,從方法上沒有問題,但是需要描出大量的點(diǎn)才能得到較為準(zhǔn)確的圖象;有的同學(xué)只是找到函數(shù)的對(duì)稱軸判定開口方向就畫出一個(gè)圖象,或者是找到函數(shù)的對(duì)稱軸和y軸的交點(diǎn)確定開口方向就畫出函數(shù)的圖象等等,這種不是很規(guī)范的作圖方法,感覺很快,但是往往得到的圖象不是很準(zhǔn)確的,為什么呢?

(學(xué)生稍作思考)

師:實(shí)質(zhì)上函數(shù)的性質(zhì)是函數(shù)自身特殊對(duì)應(yīng)關(guān)系的體現(xiàn),而體現(xiàn)函數(shù)的對(duì)應(yīng)關(guān)系的方法有解析式法、圖象法和列表法。既然能夠用解析式結(jié)合圖象得到函數(shù)的性質(zhì),那么能否借助于解析式直接分析其性質(zhì),然后推斷出圖象的特征呢?在推斷函數(shù)的圖象時(shí)要考慮函數(shù)的哪些主要性質(zhì)呢?我想這也是今天這節(jié)課的意圖所在,如何利用函數(shù)性質(zhì)的研究來推斷出較為準(zhǔn)確的函數(shù)圖象,大家是否有興趣和能力來探討這個(gè)問題呢?

帶著這樣的問題我?guī)ьI(lǐng)學(xué)生進(jìn)入下一個(gè)環(huán)節(jié)——師生互動(dòng)、探究新知。

(二)師生互動(dòng)、探究新知

在這個(gè)環(huán)節(jié)上,我引用課本所給的例題1請(qǐng)同學(xué)們以學(xué)習(xí)小組為單位嘗試完成。

例1、試述二次函數(shù)的性質(zhì),并作出它的圖象。

要求:按照解析式----性質(zhì)----推斷函數(shù)圖象的`過程來探討。

【設(shè)計(jì)意圖是:以便于學(xué)生在對(duì)比中進(jìn)一步理解函數(shù)性質(zhì)的應(yīng)用,突破應(yīng)用函數(shù)的性質(zhì)來推斷函數(shù)圖象這一難點(diǎn)。同時(shí)體驗(yàn)分析障礙和獲得成功的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣?!?/p>

在學(xué)生學(xué)習(xí)小組的一番探討后,教師選小組代表做總結(jié)發(fā)言,要求說出利用解析式得到性質(zhì)的分析過程。

(其他小組作出補(bǔ)充,教師引導(dǎo)從以下幾個(gè)方面完善):

(1)定義域(2)開口方向(3)值域(頂點(diǎn))及最值(4)對(duì)稱軸(5)單調(diào)性(6)奇偶性(7)零點(diǎn)(8)圖象

【設(shè)計(jì)意圖是:讓學(xué)生在師生互動(dòng),共同探討的過程中逐步實(shí)現(xiàn)知識(shí)的遷移,基本上形成新的認(rèn)知?!?/p>

【學(xué)情預(yù)設(shè):因?yàn)槭堑谝淮螄L試?yán)媒馕鍪椒治鲂再|(zhì)并推斷圖象,學(xué)生對(duì)于某些性質(zhì)不能準(zhǔn)確的闡述出分析過程,對(duì)對(duì)稱軸的確定、單調(diào)區(qū)間及單調(diào)性的分析等可能存在困難?!?/p>

這時(shí)教師可以利用對(duì)解析式的分析結(jié)合多媒體引導(dǎo)學(xué)生得到分析的思路和解決的方法,進(jìn)而突破教學(xué)難點(diǎn)。

根據(jù)實(shí)際情況教師可以引導(dǎo)學(xué)生從二次函數(shù)的配方結(jié)果來分析:

(1)單調(diào)性的分析: 在=中當(dāng)時(shí),取得最小值-2,當(dāng)時(shí),自變量就越大,越小,就越大,就越大,即就越大,即就越大; 就越大;當(dāng)時(shí),自變量越大,這樣單調(diào)性及單調(diào)區(qū)間(分界點(diǎn))自然可以解決,結(jié)合單調(diào)性的定義可給出嚴(yán)格的證明;同時(shí)也可以幫助我們說明開口的方向是向上的。

(2)對(duì)稱性的分析:

在=中當(dāng)和時(shí),如果=時(shí),即,也就是,則時(shí),一定有

也就是成立。因此可以令成立,這就是說二次函數(shù)的兩個(gè)數(shù)于直線和對(duì)稱。的自變量時(shí),函數(shù)值在軸上取兩個(gè)關(guān)于-4對(duì)應(yīng)的點(diǎn)為對(duì)稱中心的兩個(gè)點(diǎn)對(duì)應(yīng)總是成立的,這就說明函數(shù)的圖象關(guān)在對(duì)解析式分析的同時(shí)借助于幾何畫板課件演示,讓學(xué)生直觀感受:

然后在教師的引導(dǎo)之下推廣并得出一般結(jié)論:如果函數(shù)成立,則函數(shù)的圖象關(guān)于直線對(duì)定義域內(nèi)的任意

對(duì)稱。都有在得出對(duì)稱性的一般結(jié)論這一副產(chǎn)品后,為了強(qiáng)化對(duì)這個(gè)結(jié)論的認(rèn)識(shí)和理解,教師可以安插一個(gè)練習(xí)題:

練習(xí):試用以上結(jié)論來概括函數(shù)___________________________. 應(yīng)該滿足的結(jié)論是

在完成以上各環(huán)節(jié)后,教師再次提出任務(wù):既然我們把二次函數(shù)的相關(guān)性質(zhì)都分析完成,那么根據(jù)以上性質(zhì)請(qǐng)同學(xué)們?cè)俅畏治鋈绾卫枚魏瘮?shù)的性質(zhì)推斷出二次函數(shù)的圖象? 用二次函數(shù)的性質(zhì)推斷函數(shù)的圖象時(shí)需要研究分析二次函數(shù)的哪些主要性質(zhì)才能比較準(zhǔn)確地畫出圖象?

函數(shù)的圖像教學(xué)設(shè)計(jì)(4)

八年級(jí)數(shù)學(xué)一次函數(shù)的圖像教學(xué)設(shè)計(jì)

教材分析:

學(xué)情分析:

教學(xué)目標(biāo):

1、理解一次函數(shù)及其圖象的有關(guān)性質(zhì)。

2、能熟練地作出一次函數(shù)的圖象。

3、進(jìn)一步培養(yǎng)學(xué)生數(shù)形結(jié)合的意識(shí)和能力。

教學(xué)準(zhǔn)備

《數(shù)學(xué)學(xué)與練》

集體備課意見和主要參考資料

頁邊批注

教學(xué)過程

一.新課導(dǎo)入

上節(jié)課我們學(xué)習(xí)了如何畫一次函數(shù)的圖象,步驟為①列表;②描點(diǎn);③連線。經(jīng)過討論我們又知道了畫一次函數(shù)的圖象不需要許多點(diǎn),只要找兩點(diǎn)即可,還明確了一次函數(shù)的代數(shù)表達(dá)式與圖象之間的對(duì)應(yīng)關(guān)系。

本節(jié)課我們進(jìn)一步來研究一次函數(shù)的圖象的其他性質(zhì)。

二.新課講授

(1)首先我們來研究一次函數(shù)的特例——正比例函數(shù)有關(guān)性質(zhì)。

請(qǐng)大家在同一坐標(biāo)系內(nèi)作出正比例函數(shù)y=x,y=x,y=3x,y=-2x的圖象。

議一議

(1)正比例函數(shù)y=kx的圖象有什么特點(diǎn)?

(2)你作正比例函數(shù)y=kx的圖象時(shí)描了幾個(gè)點(diǎn)?

(3)直線y=x,y=x,y=3x中,哪一個(gè)與x軸正方向所成的銳角最大?哪一與x軸正方向所成的銳角最小?

小結(jié):正比例函數(shù)的圖象有以下特點(diǎn):

(1)正比例函數(shù)的圖象都經(jīng)過坐標(biāo)原點(diǎn)。

(2)作正比例函數(shù)y=kx的圖象時(shí),除原點(diǎn)外,還需找一點(diǎn),一般找(1,k)點(diǎn)。

(3)在正比例函數(shù)y=kx圖象中,當(dāng)k>0時(shí),k的值越大,函數(shù)圖象與x軸正方向所成的銳角越大。

(4)在正比例函數(shù)y=kx的圖象中,當(dāng)k>0時(shí),y的值隨x值的增大而增大;當(dāng)k<0時(shí),y的值隨x值的增大而減小。

做一做

在同一直角坐標(biāo)系內(nèi)作出一次函數(shù)y=2x+6,y=-x,y=-x+6,y=5x的圖象。

一次函數(shù)y=kx+b的圖象的特點(diǎn):分析:在函數(shù)y=2x+6中,k>0,y的值隨x值的增大而增大;在函數(shù)y=-x+6中,y的值隨x值的`增大而減小。

由上可知,一次函數(shù)y=kx+b中,y的值隨x的變化而變化的情況跟正比例函數(shù)的圖象的性質(zhì)相同。

對(duì)照正比例函數(shù)圖象的性質(zhì),可知一次函數(shù)的圖象不過原點(diǎn),但是和兩個(gè)坐標(biāo)軸相交。在作一次函數(shù)的圖象時(shí),也需要描兩個(gè)點(diǎn)。一般選取(0,b),(-,0)比較簡(jiǎn)單。

想一想

(1)x從0開始逐漸增大時(shí),y=2x+6和y=5x哪一個(gè)值先達(dá)到20?這說明了什么?

(2)直線y=-x與y=-x+6的位置關(guān)系如何?

(3)直線y=2x+6與y=-x+6的位置關(guān)系如何?

在同一直角坐標(biāo)系內(nèi)作出一次函數(shù)y=2x,y=2x+3,y=2x-3的圖象。探索一次函數(shù)y=kx+b中,b的值對(duì)一次函數(shù)圖象的影響.

三.鞏固練習(xí)

1、正比例函數(shù)y=kx的圖象的特點(diǎn)。

2、一次函數(shù)y=kx+b的圖象的特點(diǎn)。

3、一次函數(shù)y=kx+b的k、b的值對(duì)一次函數(shù)圖象的影響。

四.小結(jié)

作業(yè)設(shè)計(jì)

1、下列一次函數(shù)中,y的值隨x值的增大而增大的是()

A、y=-5x+3B、y=-x-7C、y=-D、y=-+4

2、下列一次函數(shù)中,y的值隨x值的增大而減小的是()

A、y=x-8B、y=-x+3C、y=2x+5D、y=7x-6

【微語】你只看得到我對(duì)你的微笑。卻不知道那些對(duì)我意味著什么。

985大學(xué) 211大學(xué) 全國(guó)院校對(duì)比 專升本 美國(guó)留學(xué) 留求藝網(wǎng)

溫馨提示:
本文【函數(shù)的圖像教學(xué)設(shè)計(jì)(集合4篇)】由作者教培參考提供。該文觀點(diǎn)僅代表作者本人,培訓(xùn)啦系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)空間服務(wù),若存在侵權(quán)問題,請(qǐng)及時(shí)聯(lián)系管理員或作者進(jìn)行刪除。
我們采用的作品包括內(nèi)容和圖片部分來源于網(wǎng)絡(luò)用戶投稿,我們不確定投稿用戶享有完全著作權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護(hù)條例》,如果侵犯了您的權(quán)利,請(qǐng)聯(lián)系我站將及時(shí)刪除。
內(nèi)容侵權(quán)、違法和不良信息舉報(bào)
Copyright @ 2024 培訓(xùn)啦 All Rights Reserved 版權(quán)所有. 湘ICP備2022011548號(hào) 美國(guó)留學(xué) 留求藝