分析 連接AA′,CC′,線段AA′、CC′的垂直平分線的交點(diǎn)就是點(diǎn)P.
解答 解:連接AA′、CC′,如圖所示:
作線段AA′的垂直平分線MN,作線段CC′的垂直平分線EF,
直線MN和直線EF的交點(diǎn)為P,點(diǎn)P就是旋轉(zhuǎn)中心.
∵直線MN為:x=1,設(shè)直線CC′為y=kx+b,
由題意得:$\left\{\begin{array}{l}{-k+b=0}\\{2k+b=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=\frac{1}{3}}\\{b=\frac{1}{3}}\end{array}\right.$,
∴直線CC′為y=$\frac{1}{3}$x+$\frac{1}{3}$,
∵直線EF⊥CC′,經(jīng)過(guò)CC′中點(diǎn)($\frac{1}{2}$,$\frac{1}{2}$),
∴直線EF為y=-3x+2,
由$\left\{\begin{array}{l}{x=1}\\{y=-3x+2}\end{array}\right.$得:$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$,
∴P(1,-1).
故選:B.
點(diǎn)評(píng) 本題考查旋轉(zhuǎn)的性質(zhì),掌握對(duì)應(yīng)點(diǎn)連線段的垂直平分線的交點(diǎn)就是旋轉(zhuǎn)中心,是解題的關(guān)鍵.