分析 (1)根據(jù)等腰三角形的性質(zhì)得到∠APQ=∠AQP,由鄰補(bǔ)角的定義得到∠APB=∠AQC,根據(jù)三角形外角的性質(zhì)即可得到結(jié)論;
(2)如圖2根據(jù)等腰三角形的性質(zhì)得到∠APQ=∠AQP,由鄰補(bǔ)角的定義得到∠APB=∠AQC,由點Q關(guān)于直線AC的對稱點為M,得到AQ=AM,∠OAC=∠MAC,等量代換得到∠MAC=∠BAP,推出△APM是等邊三角形,根據(jù)等邊三角形的性質(zhì)即可得到結(jié)論.
解答 解:(1)∵AP=AQ,
∴∠APQ=∠AQP,
∴∠APB=∠AQC,
∵△ABC是等邊三角形,
∴∠B=∠C=60°,
∴∠BAP=∠CAQ=20°,
∴∠AQB=∠APQ=∠BAP+∠B=80°;
(2)如圖2,∵AP=AQ,
∴∠APQ=∠AQP,
∴∠APB=∠AQC,
∵△ABC是等邊三角形,
∴∠B=∠C=60°,
∴∠BAP=∠CAQ,(將線段BP繞點B順時針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請你參考上面的想法,幫助小茹證明PA=PM)
∵點Q關(guān)于直線AC的對稱點為M,
∴AQ=AM,∠QAC=∠MAC,
∴∠MAC=∠BAP,
∴∠BAP+∠PAC=∠MAC+∠CAP=60°,
∴∠PAM=60°,
∵AP=AQ,
∴AP=AM,
∴△APM是等邊三角形,
∴AP=PM.證明△ABP≌△ACM≌△BCK
點評 本題考查了等邊三角形的性質(zhì)和判定,等腰三角形的性質(zhì),三角形的外角的性質(zhì),軸對稱的性質(zhì),熟練掌握等邊三角形的判定和性質(zhì)是解題的關(guān)鍵.