教培參考
教育培訓(xùn)行業(yè)知識型媒體
發(fā)布時間: 2025年01月13日 17:39
知識要點
1、二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是一次的整式方程叫做~
2、二元一次方程的解:適合二元一次方程的一組未知數(shù)的值叫做這個二元一次方程的一個解;
3、二元一次方程組:由幾個一次方程組成并含有兩個未知數(shù)的方程組叫做二元一次方程組
4、二元一次方程組的解:適合二元一次方程組里各個方程的一對未知數(shù)的值,叫做這個方程組里各個方程的公共解,也叫做這個方程組的解(注意:①書寫方程組的解時,必需用“”把各個未知數(shù)的值連在一起,即寫成的形式;②一元方程的解也叫做方程的根,但是方程組的解只能叫解,不能叫根)
5、解方程組:求出方程組的解或確定方程組沒有解的過程叫做解方程組
6、解二元一次方程組的基本方法是代入消元法和加減消元法(簡稱代入法和加減法)
(1)代入法解題步驟:把方程組里的一個方程變形,用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù);把這個代數(shù)式代替另一個方程中相應(yīng)的未知數(shù),得到一個一元一次方程,可先求出一個未知數(shù)的值;把求得的這個未知數(shù)的值代入第一步所得的式子中,可求得另一個未知數(shù)的值,這樣就得到了方程的解
(2)加減法解題步驟:把方程組里一個(或兩個)方程的兩邊都乘以適當?shù)臄?shù),使兩個方程里的某一個未知數(shù)的系數(shù)的絕對值相等;把所得到的兩個方程的兩邊分別相加(或相減),消去一個未知數(shù),得到含另一個未知數(shù)的一元一次方程(以下步驟與代入法相同)
一、例題精講
分別用代入法和加減法解方程組
解:代入法:由方程②得:③
將方程③代入方程①得:
解得x=2
將x=2代入方程②得:4-3y=1
解得y=1
所以方程組的解為
加減法:
例2.從少先隊夏令營到學(xué)校,先下山再走平路,一少先隊員騎自行車以每小時12公里的速度下山,以每小時9公里的速度通過平路,到學(xué)校共用了55分鐘,回來時,通過平路速度不變,但以每小時6公里的速度上山,回到營地共花去了1小時10分鐘,問夏令營到學(xué)校有多少公里?
分析:路程分為兩段,平路和坡路,來回路程不變,只是上山和下山的轉(zhuǎn)變導(dǎo)致時間的不同,所以設(shè)平路長為x公里,坡路長為y公里,表示時間,利用兩個不同的過程列兩個方程,組成方程組
解:設(shè)平路長為x公里,坡路長為y公里
依題意列方程組得:
解這個方程組得:
經(jīng)檢驗,符合題意
x+y=9
答:夏令營到學(xué)校有9公里二、課堂小結(jié):
回顧本章內(nèi)容,總結(jié)二元一次方程組的解法和應(yīng)用。
三、作業(yè)布置:
P25A組習(xí)題
一、說教材
首先談?wù)勎覍滩牡睦斫?,《二元一次方程組》是人教版初中數(shù)學(xué)七年級下冊第八章第一節(jié)的內(nèi)容,本節(jié)課的內(nèi)容是二元一次方程組的概念以及二元一次方程組的解。在此之前學(xué)習(xí)了一元一次方程和解方程的步驟,為本節(jié)課打下了良好的基礎(chǔ)。學(xué)了本節(jié)課為后面的解二元一次方程的方法做下鋪墊。因此本節(jié)課有著承上啟下的作用。
二、說學(xué)情
接下來談?wù)剬W(xué)生的實際情況。新課標指出學(xué)生是教學(xué)的主體,所以要成為符合新課標要求的教師,深入了解所面對的學(xué)生可以說是必修課。本階段的學(xué)生已經(jīng)具備了一定的分析能力,與類比學(xué)習(xí)能力。而且在生活中也為本節(jié)課積累了很多經(jīng)驗。所以,學(xué)生對于二元一次方程組概念理解較為容易,找出方程組的解,相對來說有難度,需要教師多引導(dǎo)。
三、說教學(xué)目標
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標:
(一)知識與技能
掌握二元一次方程與二元一次方程組的概念,并了解它們的解,能正確地找出二元一次方程組的解。
(二)過程與方法
通過類比學(xué)習(xí)、自主探究、合作交流的過程,提升類比學(xué)習(xí)的能力、培養(yǎng)探究的意識。
(三)情感態(tài)度價值觀
感受數(shù)學(xué)與生活的密切聯(lián)系,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。
四、說教學(xué)重難點
我認為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。而教學(xué)重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點是:二元一次方程與二元一次方程組的概念以及方程與方程組的解。教學(xué)難點是:二元一次方程組解的探究。
五、說教法和學(xué)法
現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、小組合作等教學(xué)方法。
六、說教學(xué)過程
下面我將重點談?wù)勎覍虒W(xué)過程的設(shè)計。
(一)新課導(dǎo)入
首先是導(dǎo)入環(huán)節(jié),我采用情境導(dǎo)入:展示籃球聯(lián)賽圖片,給出評分標準。并提出問題:這個隊伍勝負場數(shù)分別是多少?
根據(jù)學(xué)生回答追問:用列方程解決問題,題中有幾個未知數(shù)呢?從而引出本節(jié)課的課題《二元一次方程組》
這樣設(shè)計的好處是:利用籃球聯(lián)賽的圖片導(dǎo)入,并講清楚評分規(guī)則,不僅可以吸引學(xué)生探索的興趣,還可以培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。
(二)新知探索
接下來是教學(xué)中最重要的新知探索環(huán)節(jié),主要通過三個活動展開學(xué)習(xí)。
活動一:學(xué)生嘗試列方程解決問題,看看在列方程過程中遇到了什么困難?同桌之間互相交流。
學(xué)生分析題意,發(fā)現(xiàn)有未知數(shù),可以使用列方程的方法解決問題。當讓學(xué)生自己動手練習(xí)時,他們會發(fā)現(xiàn),勝負的場數(shù)都是未知的。
此時教師可以引導(dǎo)學(xué)生發(fā)現(xiàn)和思考:要求的是兩個未知數(shù),能不能根據(jù)題意直接設(shè)兩個未知數(shù),使列方程變得容易呢?學(xué)生在這樣的提示下會有一定的想法,但對于列出二元一次方程組來說還是比較困難的。
教師板書表格示意圖,引導(dǎo)學(xué)生通過題意,發(fā)現(xiàn)題干中包含的必須同時滿足的條件,得到兩組關(guān)系式并設(shè)出未知數(shù)完成表格。
活動二:學(xué)生觀察兩個方程特點,與一元一次方程有什么不同?并試著下定義。
在這里學(xué)生通過類比學(xué)習(xí),能夠歸納出二元一次方程的概念:每個方程都含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1。了解了二元一次方程后,對于二元一次方程組的概念就可以很好的展開了,對于本題列了兩個二元一次方程解決問題,像這樣的方程組叫做二元一次方程組。
師生共同總結(jié)出二元一次方程與二元一次方程組的定義。
列出了二元一次方程組,要解決籃球聯(lián)賽的問題,就要求出方程組的解,接下來進行第三個活動。
活動三:完成表格,以二元一次方程組中的一個方程為例。小組合作,找出幾組整數(shù)解,并觀察哪一組解也符合另一個方程。
在這里解二元一次方程組,可以先將問題簡單化,先研究一個方程的解,找到幾組解后,再看哪一組解也符合第二個方程。也就是兩個方程的公共解。教師給出表格,小組在進行合作時,教師應(yīng)引導(dǎo)學(xué)生思考結(jié)合題意,兩個未知數(shù)應(yīng)取正整數(shù)。填完表格后,師生共同總結(jié)出二元一次方程解的定義。
教師繼續(xù)追問,哪一組的值也滿足第二個方程。師生共同總結(jié)出什么叫做二元一次方程組的解。
得到方程組的解,回歸情景得出實際問題的答案。
設(shè)計意圖:通過三個活動展開本節(jié)課,不僅符合新課改的理念:學(xué)生是學(xué)習(xí)的主體,教師是教學(xué)活動中的組織者、引導(dǎo)者、合作者,還能通過小組活動、類比學(xué)習(xí)等活動豐富課堂。
(三)課堂練習(xí)
接下來是鞏固提高環(huán)節(jié)。
練習(xí):對下面的問題,列出二元一次方程組,并根據(jù)問題的實際意義,找出問題的解。
加工某種產(chǎn)品需經(jīng)兩道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件?,F(xiàn)有7位工人參加這兩道工序,應(yīng)怎樣安排人力,才能使每天第一、第二道工序所完成的件數(shù)相等?
設(shè)計這道題可以讓學(xué)生感受數(shù)學(xué)與生活的密切聯(lián)系,學(xué)以致用。教師可以及時掌握學(xué)生本節(jié)課的學(xué)習(xí)情況,給予補充糾正。
(四)小結(jié)作業(yè)
在課程的最后我會提問:今天有什么收獲?
引導(dǎo)學(xué)生回顧:二元一次方程組的定義與二元一次方程組的解。
本節(jié)課的課后作業(yè)我設(shè)計為:
思考除了用列表找二元一次方程組的解,還有什么方法能找出解,能不能將它變成我們熟悉的一元一次方程求解。
設(shè)計意圖:本節(jié)課學(xué)生通過列表觀察得到了方程組的解,作業(yè)設(shè)計為讓學(xué)生思考解二元一次方程組的方法,并提示能不能把它變成熟悉的一元一次方程求解,為下節(jié)課的學(xué)習(xí)做下鋪墊。
七、說板書設(shè)計
教學(xué)目標
1.會用加減法解一般地二元一次方程組。
2.進一步理解解方程組的消元思想,滲透轉(zhuǎn)化思想。
3.增強克服困難的勇力,提高學(xué)習(xí)興趣。
教學(xué)重點
把方程組變形后用加減法消元。
教學(xué)難點
根據(jù)方程組特點對方程組變形。
教學(xué)過程
一、復(fù)習(xí)引入
用加減消元法解方程組。
二、新課。
1.思考如何解方程組(用加減法)。
先觀察方程組中每個方程x的系數(shù),y的系數(shù),是否有一個相等?;蚧橄喾磾?shù)?
能否通過變形化成某個未知數(shù)的系數(shù)相等,或互為相反數(shù)?怎樣變形。
學(xué)生解方程組。
2.例1.解方程組
思考:能否使兩個方程中x(或y)的系數(shù)相等(或互為相反數(shù))呢?
學(xué)生討論,小組合作解方程組。
提問:用加減消元法解方程組有哪些基本步驟?
三、練習(xí)。
1.P40練習(xí)題(3)、(5)、(6)。
2.分別用加減法,代入法解方程組。
四、小結(jié)。
解二元一次方程組的加減法,代入法有何異同?
一、說教材分析
1、教材的地位和作用
二元一次方程組是初中數(shù)學(xué)的重點內(nèi)容之一,是一元一次方程知識的延續(xù)和提高,又是學(xué)習(xí)其他數(shù)學(xué)知識的基礎(chǔ)。本節(jié)課是在學(xué)生學(xué)習(xí)了一元一次方程的基礎(chǔ)上,繼續(xù)學(xué)習(xí)另一種方程及方程組,它是學(xué)生系統(tǒng)學(xué)習(xí)二元一次方程組知識的前提和基礎(chǔ)。通過類比,讓學(xué)生從中充分體會二元一次方程組,理解并掌握解二元一次方程組的基本概念,為以后函數(shù)等知識的學(xué)習(xí)打下基礎(chǔ)。
2、教學(xué)目標
知識目標:通過實例了解二元一次方程和它的解,二元一次方程組和它的解。
能力目標:會判斷一組未知數(shù)的值是否為二元一次方程及方程組的解。會在實際問題中列二元一次方程組。
情感目標:使學(xué)生通過交流、合作、討論獲取成功體驗,激發(fā)學(xué)生學(xué)習(xí)知識的興趣,增強學(xué)生的自信心。
3、重點、 難點
重點:二元一次方程和二元一次方程的解,二元一次方程組和二元一次方程組的解的概念。
難點:在實際生活中二元一次方程組的應(yīng)用。
二、教法
現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、言道者,教學(xué)的一切活動必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與教學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題,在引導(dǎo)分析時,給學(xué)生留出足夠的思考時間和空間,讓學(xué)生去聯(lián)想、探索,從真正意義上完成對知識的自我建構(gòu)。
另外,在教學(xué)過程中,我采用多媒體輔助教學(xué),以直觀呈現(xiàn)教學(xué)素材,從而更好發(fā)激發(fā)學(xué)生的學(xué)習(xí)興趣,增大教學(xué)容量,提高教學(xué)效率。
三、學(xué)法
“問題”是數(shù)學(xué)教學(xué)的心臟,活動是數(shù)學(xué)教學(xué)中的靈魂。所以我在學(xué)生思維最近發(fā)展區(qū)內(nèi)設(shè)置并提出一系列問題,通過數(shù)學(xué)活動,引導(dǎo)學(xué)生:自主性學(xué)習(xí),合作式學(xué)習(xí),探究式學(xué)習(xí)等,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的數(shù)學(xué)思維和參與度,力求學(xué)生在“雙基”數(shù)學(xué)能力和理性精神方面得到一定發(fā)展。
四、教學(xué)過程
新課標指出,數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進行學(xué)習(xí)活動的過程,是教師和學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學(xué),本節(jié)課我主要安排以下教學(xué)環(huán)節(jié):
(1)復(fù)習(xí)舊知,溫故知新
籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝一場得2分。負一場得1分,某隊為了爭取較好的名次,想在全部22場比賽中得到40分,那么這個隊勝負場數(shù)分別是多少?
設(shè)計意圖:構(gòu)建注意主張教學(xué)應(yīng)從學(xué)生已有的知識體系出發(fā),方程是本節(jié)課深入研究二元一次方程組的認知基礎(chǔ),這樣設(shè)計有利于引導(dǎo)學(xué)生順利地進入學(xué)習(xí)情境。
(2)創(chuàng)設(shè)情境,提出問題
這個問題中包含了哪些必須同時滿足的條件?設(shè)勝的場數(shù)是x,負的場數(shù)是y,你能用方程把這些條件表示出來嗎?
由問題知道,題中包含兩個必須同時滿足的條件:
勝的場數(shù)+負的場數(shù)=總場數(shù),
勝場積分+負場積分=總積分。
這兩個條件可以用方程
x+y=22
2x+y=40
表示:
上面兩個方程中,每個方程都含有兩個未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程。
把兩個方程合在一起,寫成
x+y=22
2x+y=40
像這樣,把兩個二元一次方程合在一起,就組成了一個二元一次方程組。
設(shè)計意圖:以問題串的形式創(chuàng)設(shè)情境,引起學(xué)生的認知沖突,使學(xué)生對舊知識產(chǎn)生設(shè)疑,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望,通過情境創(chuàng)設(shè),學(xué)生已激發(fā)了強烈的求知欲望,產(chǎn)生了強勁的學(xué)習(xí)動力,此時我把學(xué)生帶入下一環(huán)節(jié)。
(3)發(fā)現(xiàn)問題,探求新知
滿足方程①,且符合問題的實際意義的x、y的值有哪些?把它們填入表中。
教學(xué)目的
1、使學(xué)生二元一次方程、二元一次方程組的概念,會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。
2、使學(xué)生了解二元一次方程、二元一次方程組的解的含義,會檢驗一對數(shù)是不是它們的解。
3、通過和一元一次方程的比較,加強學(xué)生的類比的思想方法。通過“引例”的學(xué)習(xí),使學(xué)生認識數(shù)學(xué)是根據(jù)實際的需要而產(chǎn)生發(fā)展的觀點。
教學(xué)分析
重點:(1)使學(xué)生認識到一對數(shù)必須同時滿足兩個二元一次方程,才是相應(yīng)的二元一次方程組的解。
(2)掌握檢驗一對數(shù)是否是某個二元一次方程的解的書寫格式。
難點:理解二元一次方程組的解的含義。
突破:啟發(fā)學(xué)生理解概念。
教學(xué)過程
一、復(fù)習(xí)
1、是什么方程?是什么一元一次方程?一元一次方程的標準形式是什么?它的解如何表達?如何檢驗x=3是不是方程5x+3(9-x)=33的解?
2、列方程解應(yīng)用題:香蕉的售價為5元/千克,蘋果的售價為3元/千克,小華共買了9千克,付款33元。香蕉和蘋果各買了多少千克?
(先要求學(xué)生按以前的常規(guī)方法解,即設(shè)一個未知數(shù),表示出另一個未知數(shù),再列出方程。)
既然求兩種水果各買多少?那么能不能設(shè)兩個未知數(shù)呢?學(xué)生嘗試設(shè)兩個未知數(shù),設(shè)買香蕉x千克,買蘋果y千克,列出下列兩個方程:
x+y=9
5x+3y=33
這里x與y必須滿足這兩個方程,那么又該如何表達呢?數(shù)學(xué)里大括號表示“不僅……而且……”,因此用大括號把兩個方程聯(lián)立起來:
這又成了什么呢?里面的是不是一元一次方程呢?這就是我們今天要學(xué)習(xí)的內(nèi)容。板書課題。
二、新授
1、有關(guān)概念
(1)給出二元一次方程的概念
觀察上面兩個方程的特點,未知數(shù)的個數(shù)是多少,含未知數(shù)項的次數(shù)是多少?你能根據(jù)一元一次方程的定義給出新方程的定義嗎?教師給出定義(見P5)。
結(jié)合定義對“元”與“次”作進一步的解釋:“元”與“未知數(shù)”相通,幾個元就是指幾個未知數(shù),“次”指未知數(shù)的最高次數(shù)。二元一次方程和一元一次方程都是整式方程,只有整式方程才能說幾元幾次方程。
(2)給出二元一次方程組的定義。(見P5)式子:
表示一個二元一次方程組,它由方程①、②構(gòu)成。當某兩個未知數(shù)相同的二元一次方程組成一個二元一次方程組時應(yīng)加上大括號。
(3)給出二元一次方程組的解的定義及表示法。
三、練習(xí)
P6練習(xí):1,2。
四、小結(jié)
1、什么是二元一次方程?什么是二元一次方程組?
2、什么是二元一次方程組的解?如何檢驗一對數(shù)是不是某個方程組的解
五、作業(yè)
1、P 5.1 A:1(3、4),3,4。
一、內(nèi)容分析
1.1學(xué)習(xí)任務(wù)分析:二元一次方程、二元一次方程的解、二元一次方程組、二元一次方程組的解,是本節(jié)課的核心概念。它既是一元一次方程的延續(xù),又是三元一次方程組的基礎(chǔ)。
1.2學(xué)生情況分析:就方程而言,初一學(xué)生已有一元一次方程的有關(guān)知識。所以本節(jié)課將引導(dǎo)學(xué)生自己發(fā)現(xiàn)新的方程并嘗試通過類比“發(fā)現(xiàn)”有關(guān)新概念,使學(xué)生逐步建立方程的知識體系。但對學(xué)生來說二元一次方程組的解的表達形式是陌生的,對他們來說正確寫出解并理解其含義具有一定的難度。
二、學(xué)習(xí)目標設(shè)計
知識目標:使學(xué)生掌握二元一次方程、二元一次方程的解、二元一次方程組、二元一次方程組的解的概念。能辨別那些是二元一次方程(組),并能正確的寫出他們的解
能力目標:通過嘗試命名新方程、嘗試“發(fā)明”有關(guān)概念,培養(yǎng)學(xué)生知識移的能力,并從初一開始養(yǎng)成建立知識體系的習(xí)慣。通過學(xué)生自己設(shè)計問題,充分發(fā)揮其主體性,培養(yǎng)創(chuàng)新意識。
情感目標:體驗數(shù)學(xué)發(fā)現(xiàn)中的快樂,激發(fā)學(xué)生自主學(xué)習(xí)的樂趣。
重點 二元一次方程(組)及二元一次方程(組)的解的概念。
難點 理解、判斷二元一次方程(組)的解,并能用正確的'形式表達二元一次方程(組)的解。
三、課堂結(jié)構(gòu)設(shè)計
動手實驗,引導(dǎo)學(xué)生發(fā)現(xiàn)問題(課題)、嘗試命名和定義
練習(xí)反饋
結(jié)合實驗,引導(dǎo)學(xué)生設(shè)計問題并發(fā)現(xiàn)方程組
練習(xí)反饋
引導(dǎo)學(xué)生在小結(jié)鞏固中更好的理解概念
分層練習(xí),引導(dǎo)學(xué)生積極探索
回歸實驗,學(xué)生完善自己的設(shè)計
四、教學(xué)媒體設(shè)計
充分利用PPT演示文稿的高效性、板書的實效性和可留性以及事物演示的直觀性,將它們有機結(jié)合,各取其長。
五、教學(xué)過程設(shè)計
5.1動手實驗,引導(dǎo)學(xué)生發(fā)現(xiàn)問題(課題)、嘗試命名和定義。
實驗情境:請學(xué)生將手中40厘米長的繩子繃成一個長方形。(課前結(jié)已打好,所占長度忽略不計)
相互交流:學(xué)生相互交流所繃成的長方形是否完全相同,有何異同之處。
(異:各自的長和寬不同;同:周長都是40厘米。)得出實驗結(jié)論:周長為40厘米的長方形有無數(shù)個。(同時借助多媒體演示實驗過程與結(jié)論)
引出課題:如果寬設(shè)為x厘米,長設(shè)為y厘米,你能發(fā)現(xiàn)x和y的關(guān)系么?(x+y=20)。學(xué)生會感覺這個式子既熟悉又陌生。熟悉的是這是個方程,陌生的是它是什么方程。引導(dǎo)學(xué)生將它與已學(xué)的一元一次方程作比較,(未知數(shù)的個數(shù)不同),進而請學(xué)生嘗試給這樣的方程命名,并給出命名的理由。(二元一次方程)。引出課題。并且由學(xué)生仿照一元一次方程的定義嘗試定義二元一次方程。
二元一次方程的解:請學(xué)生說出二元一次方程的解的定義,(使二元一次方程左右兩邊相等的兩個未知數(shù)的值)。強調(diào)是兩個未知數(shù)的值。
就x+y=20這個方程而言,它的解是多少呢?學(xué)生發(fā)現(xiàn)有無數(shù)個,如x=1,y=19;x=2,y=18;通過設(shè)問x=1時,y還能取什么值?讓學(xué)生理解雖有無數(shù)個解,但x和y是相互制約的,所以前面要加 , x=1 這y=19一對值就是這個二元一次方程的一個解。并請學(xué)生規(guī)范的寫出一些解。
這無數(shù)個解都適合這個長方形問題么?學(xué)生討論后可得出,負數(shù)不行,小數(shù)可以,所以長方形問題仍然是無數(shù)個解,從而用方程解的知識解釋了實驗的結(jié)論。
最終用數(shù)學(xué)知識解釋了實驗的結(jié)論。
設(shè)計說明:實驗與二元一次方程相對應(yīng),實驗的結(jié)果與二元一次方程的無數(shù)個解相對應(yīng)。每位學(xué)生都參與到實驗中,用心感受x、y間的關(guān)系,激發(fā)探索數(shù)學(xué)知識的樂趣。并且這個實驗將作為一條主線貫穿整個課堂。
學(xué)生自己發(fā)現(xiàn)、命名二元一次方程以及概念的知識基礎(chǔ)是一元一次方程,知識遷移的要求不高,具有可行性。
練習(xí)1:下列哪些是二元一次方程,哪些不是?
① ②
③ ④
學(xué)生回答,并緊扣定義說明理由。
設(shè)計說明:牢抓二元、一次、方程三個關(guān)鍵詞,設(shè)計問題,及時鞏固定義。
請學(xué)生小結(jié)一元一次方程和二元一次方程的區(qū)別和聯(lián)系。
練習(xí)2:寫出二元一次方程 y-x=10 的一些解。
設(shè)計說明:在講解解的問題中有三個關(guān)鍵點:
1、二元一次方程的解有無數(shù)個;
2、每一個解由x和y這一對相互制約的值組成;
3、解的書寫格式。并通過練習(xí)反饋掌握情況。
5.2結(jié)合實驗,引導(dǎo)學(xué)生設(shè)計問題并發(fā)現(xiàn)方程組。
5.2.1二元一次方程組的定義
周長為40厘米的長方形有無數(shù)個,若希望這道題的答案是一個而不是無數(shù)個,請學(xué)生想辦法滿足我的要求。(小組討論)
從學(xué)生設(shè)計出的眾多問題中選一個講解,若加條件:長比寬長10厘米。
此時長y寬x需要同時滿足x+y=20和y-x=10,如何在書寫上體現(xiàn)“同時”呢?
x+y=20
前面加上 , 請學(xué)生給 y-x=10 命名。(二元一次方程組)并給出定義像這樣,把兩個二元一次方程合在一起就組成了二元一次方程組。
設(shè)計說明:仍通過原來的實驗,自然引出二元一次方程組。
練習(xí)3:下列方程組中是二元一次方程組的有
(1) (2) (3) (4)
學(xué)生分析前三個,對第(4)個展開討論
把兩個二元一次方程合在一起是二元一次方程組,但二元一次方程組不一
定都是這樣,如第(4)個方程組中共有兩個未知數(shù),未知數(shù)的指數(shù)都是1,它也是二元一次方程組。(強調(diào)是方程組中的未知數(shù)共2個)
練習(xí)4:判斷下列方程組是否是二元一次方程組:
x=2 x+y=5
y=-1 2y-3z=1
設(shè)計意圖:因為書上給出的定義是描述性定義,為了避免學(xué)生理解上產(chǎn)生偏差,特設(shè)計這一組練習(xí),以強調(diào)所謂二元即指整個方程組中共含有兩個未知數(shù)。
5.2.2二元一次方程組的解
研究方程組 x+y=20 的解。
y-x=10
在分別研究了這兩個方程解的基礎(chǔ)上,請學(xué)生對它們所組成方程組的解各抒己見,最終達成共識:把兩個二元一次方程的公共解稱為二元一次方程組的解。并發(fā)現(xiàn)找公共解麻煩, 下課前告訴學(xué)生有快速求解的方法。
設(shè)計意圖:激發(fā)學(xué)生的好奇心和探索欲望。
5.3學(xué)會小結(jié),引導(dǎo)學(xué)生在小結(jié)鞏固中更好的理解概念。
至此長方形問題圓滿解決,滿足這個條件的長方形只有一個:長15厘米,寬5厘米。在解決這個問題的過程中學(xué)了一些新的知識,二元一次方程,二元一次方程的解,二元一次方程組,二元一次方程組的解。
練習(xí)5:方程組 的解是( )
(強調(diào)公共解)
練習(xí)6:寫一個解為 的二元一次方程。
變: 寫一個解為 的二元一次方程組。
練習(xí)7:就實驗中的長方形問題,每位學(xué)生完整的寫出設(shè)計的題目,并解答。
設(shè)計說明:練習(xí)5 鞏固二元一次方程組的解的定義;
練習(xí)6 鍛煉學(xué)生逆向思維的能力;
練習(xí)7 由于在剛剛設(shè)計中只采納了一位學(xué)生的設(shè)計,現(xiàn)在給大家展示自我的機會,并且通過這個問題鞏固全課的知識,前后呼應(yīng)。
5.4課后作業(yè):
必做題:94頁 練習(xí)、95頁1、2。
選做題:95頁 綜合運用3、4;
探索解二元一次方程組的方法。
六、教學(xué)評價設(shè)計
考慮本節(jié)課概念多的特點,所以在每個概念的給出后都設(shè)立了一個小練習(xí),以反饋學(xué)生的掌握情況,便于及時發(fā)現(xiàn)問題解決問題。在設(shè)置的練習(xí)中除了檢查對基本知識的掌握,同時重視學(xué)生的思維訓(xùn)練,并通過開放題等培養(yǎng)學(xué)生的創(chuàng)新意識。
教學(xué)目標
1.會用代入法解二元一次方程組;
2.體會解二元一次方程組的 “消元思想”和“化未知數(shù)為已知”的化歸思想.
3.通過對方程中未知數(shù)特點的觀察和分析明,確解二元一次方程組的主要思路 是 “消元思想”和“化二元為一元”的化歸思想.
教學(xué)重難點
1.熟練的用代入法解二元一次方程組。
2.探索如何用代入法將“二元”轉(zhuǎn)化為“一元”的消元過程。
教學(xué)過程
一、創(chuàng)設(shè)問題,引入新課
1.問題1:籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝一場得2分,負一場得1分.某隊為了爭取較好的名次,想在全部20場比賽中得到38分,那么這個隊勝、負場數(shù)分別是多少?
解:設(shè)勝場數(shù)是x則負的場數(shù)是20-x 列方程為:2x+(20-x)=38.解得x=18,則負的場數(shù)為
20-x=20-18=2
2.問題2:在上述問題中,我們可以設(shè)出兩個未知數(shù),列出二元一次方程組,若設(shè)勝的場數(shù)是x,負的場數(shù)是y,則
x+y=20
2x+y=38
那么怎樣求解二元一次方程組呢?上面的二元一次方程組和一元一次方程有什么關(guān)系呢?
設(shè)計意圖:通過創(chuàng)設(shè)同一問題分別列出一元一次方程與二元一次方程組 ,引導(dǎo)學(xué)生對兩者關(guān)聯(lián)認識,為后續(xù)代入消元法解二元一次方程作鋪墊。
二、學(xué)生探索,嘗試解決
交流問題2:可以發(fā)現(xiàn),二元一次方程組中第一個方程x+y=20可的到y(tǒng)=20-x,將第2個方程2x+y=38中y換為20-x,這個方程就化為一元一次方程2x+(20-x)=38.
歸納:
二元一次方程組中有兩個未知數(shù),如果消去其中一個未知數(shù),將二元一次方程組轉(zhuǎn)化為我們熟悉的一元一次方程,我們就可以先解出一個未知數(shù),然后再設(shè)法求另一個未知數(shù).這種將未知數(shù)的個數(shù)由多化少、逐一解決的思想方法,叫做消元思想.
歸納小結(jié):上面的解法,是把二元一次方程組中一個方程中的一個未知數(shù)用含另一個未知數(shù)的式子表示出來,再代入另一個方程,實現(xiàn)消元,進而求得這個二元一次方程組的 解.這種方法叫做代入消元法,簡稱代入法.
設(shè)計意圖:通過交流問題2,引導(dǎo)學(xué)生將心中所想顯現(xiàn)出來,代入消元法的步驟和功效逐步顯現(xiàn)出來。
三、典例交流,揭示規(guī)律
例1:用代入法解二元一次方程組x=y+3(1)
3x-8y=14(2)
解:把①代入②,得3(y+3)-8y=14,解得y=-1.把y=-1代人①,解得x=2,
所以這個方程組的解是 x=2,
y=-1
思考下列問題
(1)選擇哪個方程代入另一個方程?目的是什么?
(2)為什么能代入?目的達到了嗎?
(3)只求出 y=-1 ,方程組解完了嗎? 把y=-1 代入哪個方程求x的值較簡單?
(4)怎樣知道你運算的結(jié)果是否正確?
反思:需檢驗,將 x=2,y=-1分別代入方程①②,看方程的左右兩邊是否相等,可以口算,也可以在 草稿紙上驗算.【例2】用代入法解二元一次方程組x-y=3(1)
3x-8y=14(2)
思考:
(1)例1與例2有什么不同?(例1是用①直接代入②的,而例2的兩個方程都不具備這樣的條件.)
(2)如何變形?(把其中一個方程變形為例1中①的形式.)
(3)選擇哪個方程變形較簡單?(方程①中的x的系數(shù)為1,故可以將方程①變形得x=3+y.)
(學(xué)生口述,教師板書完成)
用代入消元法解二元一次方程組的步驟:
(1)從方程組中選取一個系數(shù)比較簡單的方程,把其中的`某一個未知數(shù)用含另一個未知數(shù)的式子表示出來.(變)
(2)把(1)中所得的方程代入另一個方程,消去一個未知數(shù).(代)
(3)解所得到的一元一次方程,求得一個未知數(shù)的值.(求)
(4)把所求得的一個未知數(shù)的值代入(1)中求得的方程,求出另一個未知數(shù)的值,從而確定方程組的解.(解)
設(shè)計意圖:進一步加強利用代入消元法解方程,逐步抽象出代入消元法解方程的一般步驟提高學(xué)生的分析能力。
四、變式訓(xùn)練,深化提高
用代入法解下面方程組
設(shè)計意圖:通過學(xué)生演練展示,幫助學(xué)生鞏固用代入法解二元一次方程組的步驟。
五、師生共進,反思小結(jié)1、本節(jié)主要學(xué)習(xí)用代入法解二元一次方程組
2、主要的解題思想方法是消元思想。
3、代入消元法解二元一次方程組需要注意的問題.
(1)用代入法解二元一次方程組時,常選用系數(shù)比較簡單的方程變形,這有利于正確、簡捷地消元.
(2)由一個方程變形得到的只含有一個未知數(shù)的代數(shù)式必須代入到另一個方程中去,否則會出現(xiàn)一個恒等式.
(3)方程組解的表示方法,應(yīng)該用大括號把一對未知數(shù)的值連在一起,表示同時成立,不要寫成x=?y=?
六、布置作業(yè):
習(xí)題8.2 1,2題
七、板書設(shè)計
二元一次方程組的教學(xué)設(shè)計
【教案設(shè)計】
二元一次方程組
安陽縣馬家鄉(xiāng)一中 袁智敏
2017-03-29
二元一次方程組
安陽縣馬家鄉(xiāng)一中 袁智敏
【教材分析】本節(jié)內(nèi)容是七年級下學(xué)期第八章第一節(jié)的內(nèi)容,與一元一次方程的學(xué)習(xí)間隔了許久,很多學(xué)生都有不同程度的遺忘,后進生更甚,故此講解前要花一定的時間來復(fù)習(xí)回顧等式、方程的概念,循序漸進地啟發(fā)誘導(dǎo)學(xué)生思維,進而自然而然順利成章地接受理解二元一次方程組,實現(xiàn)思維質(zhì)的飛躍。
【學(xué)法與教法】
學(xué)法:自學(xué),小組交流,認真聆聽感悟相結(jié)合。
教法:感受式教學(xué)法——啟發(fā)誘導(dǎo),讓學(xué)生從中感悟,找出答案。
【教具準備】
黑板,白板,多媒體教學(xué)機1臺,投影儀1臺;
自制PPT 課件。
【教學(xué)目標】
知識與技能
1、掌握概念: A、二元一次方程
B、二元一次方程組(重難點)
2、辨別真假: A、二元一次方程
B、二元一次方程組(重難點)
3、正確理解: A、二元一次方程的.解
B、二元一次方程組的解(重難點)
4、會建數(shù)學(xué)模型: 列二元一次方程組。(重難點)
過程與方法?
使學(xué)生在小組探究與自我聆聽的過程中感悟:
1、二元一次組的概念(定義)
2、建模的精髓——找出實際問題中隱含的等量關(guān)系。
情感態(tài)度與價值感?
使學(xué)生在不知不覺中建模,體會建立數(shù)學(xué)模型的樂趣,并喜歡用數(shù)學(xué)思維看待問題解決問題。
【教學(xué)重難點】
重點:1、掌握概念:二元一次方程組
2、辨別真假:二元一次方程組
3 、正確理解:二元一次方程組的解
4、會建數(shù)學(xué)模型: 列二元一次方程組。
難點:1、二元一次方程和二元一次方程組的區(qū)別;
2、列二元一次方程組。
【教學(xué)過程】
Step 1 溫故知新 學(xué)概念
1、數(shù) →算式→等式
2、一元一次方程
3、一元二次方程
4、一元 N次方程(N≥3)
5、二元一次方程
6、二元二次方程
7、二元 N次方程(N≥3)
Step 2明確定義打基礎(chǔ)
二元一次方程:
含有兩個未知數(shù),而且含未知數(shù)的項的指數(shù)都是1的方程就叫做二元一次方程。
Step 3 火眼金睛? 辨方程
1、2+3=5 1、方程
2、x + 3 =7 2、一元一次方程
3、3xy+7 =20 3、一元二次方程
4、x+3y =9? 4、一元 N次方程(N≥3)
5、二元一次方程
6、二元二次方程
7、xy+3x-5y=9? 7、二元 N次方程(N≥3)?
8、ax + by = c ?? 8、等式
(a、b字母系數(shù),c代表已知數(shù) )
Step 4 撥云見日? 理概念
例:已知?? 關(guān)于?
的二元一次方程,求 的值。
Step 5? ?細微之處看分明
二元一次方程與二元一次方程組的差別
【注】概念模糊點,對后進生需要耐心誘導(dǎo)啟發(fā))
Step 6仔細辨真假? 二元一次方程組(做判斷題)
Step 7 建模解運用題 (課本例題)
【注】1、難點,讓學(xué)生在交流中感悟建模方法與喜悅。
2、舉一反三
Step 8小試牛刀做練習(xí)
加工某產(chǎn)品需經(jīng)兩道工序,第一道工序每人每天可完成900件,第二道每人每天可完成1200件.現(xiàn)有7位工人參加這兩道工序,應(yīng)怎樣安排人力,才能使每天第一第二道工序所完成的件數(shù)相等?
【注】讓小組分成2組,指定未知數(shù)建模。更換未知數(shù)重新建模??醋詈髮嶋H結(jié)果,讓學(xué)生悟出建數(shù)學(xué)模型真諦。
Step 9真槍實彈見中考
【注】讓學(xué)生對未來充滿信心。
Step 10 暢所欲言談收獲
【注】讓學(xué)生在說與聽中獲取更大的收獲。
Step 11見縫插針做練習(xí)(機動練習(xí))
Step 12 布置作業(yè),宣布下課。
【教學(xué)反思】
由于學(xué)生數(shù)學(xué)功底良莠不齊,所以接受能力強弱不同,在把握復(fù)習(xí)舊知識,掌握新知識的時間掌控上有很大的難度。
為了能使100%的學(xué)生都有盡可能大的收益,采用小組交流的學(xué)習(xí)方式,實現(xiàn)先進生幫帶中等生、后進生,中等生幫帶后進生,后進生促進中等生,先進生,中等生促進先等生,優(yōu)等生激勵優(yōu)等生的友好模式與氛圍。
為了照顧優(yōu)等生也能吃飽,穿插了一些高難度的例題,給他們提供盡可能大的提升空間。同時提醒中等生與后進生此乃以后學(xué)習(xí)的內(nèi)容,即使沒有完全掌握也不必有心里負擔。
采用自助餐的感受式教學(xué)模式,讓每個學(xué)生自我挑選自己所需要的“菜”以及數(shù)量,效果比較好。
1
《二元一次方程組及其應(yīng)用專題復(fù)習(xí)》公開課教學(xué)設(shè)計
作為一名人民教師,時常需要編寫教學(xué)設(shè)計,教學(xué)設(shè)計要遵循教學(xué)過程的基本規(guī)律,選擇教學(xué)目標,以解決教什么的問題。教學(xué)設(shè)計要怎么寫呢?以下是小編精心整理的《二元一次方程組及其應(yīng)用專題復(fù)習(xí)》公開課教學(xué)設(shè)計,僅供參考,希望能夠幫助到大家。
一、教材的地位和作用:
本節(jié)課是在復(fù)習(xí)一元一次方程及其應(yīng)用的基礎(chǔ)上,對二元一次方程組及其應(yīng)用的復(fù)習(xí),進一步體會消元的數(shù)學(xué)思想,以及化“未知”為“已知”,化復(fù)雜問題為簡單問題的化歸思想,體會二元一次方程組與現(xiàn)實生活之間的聯(lián)系的一般的圓周角的性質(zhì)進行探索,圓周角性質(zhì)在圓的有關(guān)說理、作圖、計算中有著廣泛的應(yīng)用,也是學(xué)習(xí)圓的后續(xù)知識的重要預(yù)備知識,在教材中起著承上啟下的作用.同時,圓周角性質(zhì)也是說明線段相等,角相等的重要依據(jù)之一。
二、學(xué)情分析:
九年級下學(xué)期的學(xué)生有一定的知識結(jié)構(gòu)體系和解決問題的能力。所以在教學(xué)中除了讓學(xué)生靈活應(yīng)用“代入法”和“消元法”解二元一次方程組之外,還應(yīng)建立數(shù)學(xué)與生活的聯(lián)系,引導(dǎo)學(xué)生用數(shù)學(xué)的眼光思考問題、解決問題。
三、教學(xué)目標:
1、知識與技能:會用代入消元法和加減消元法解簡單的二元一次方程組,并能根據(jù)方程組的特點,靈活選用適當?shù)慕夥ā?/p>
2、過程與方法:探求二元一次方程組的解法,體會消元的數(shù)學(xué)思想。
3、情感、態(tài)度、價值觀:滲透轉(zhuǎn)化的辯證觀點,培養(yǎng)學(xué)生利用數(shù)學(xué)知識解決實際生活問題的實踐能力。
四、教學(xué)重點與難點:
1、重點:掌握消元思想,熟練地解二元一次方程組.會用二元一次方程組解決一些簡單的實際問題。
2、難點:是圖象法解二元一次方程組,數(shù)形結(jié)合思想.
五、教學(xué)過程:
(一)知識回顧:
1.含有2個未知數(shù),并且所含未知數(shù)的項的'次數(shù)都是1的方程叫做二元一次方程。
2.由兩個或兩個以上的二元一次方程所組成的方程組叫做二元一次方程組。
3.適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。
4.二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。
5.解二元一次方程組的基本思想是消元法,即把“二元”變成“一元”,方法有代入消元法和加減消元法。
6.列二元一次方程組解應(yīng)用題的一般步驟為:一審,二找等量關(guān)系,三設(shè)未知數(shù),四列二元一次方程組,五解,六答。
(二)重點展現(xiàn):
例1:解下例方程組:
(1)解:由①得,=1-③……將其中一個未知數(shù)用另外一個未知數(shù)表示;
將③代入②得,3+2(1-)=5……將變形后的方程代入另一個方程;
解得,=3…………解一元一次方程求出其中一個未知數(shù)的值;
把=3代入方程③得,=1-3=-2……把求出的未知數(shù)的值代入變形后的方程,求出另一個未知數(shù)的值
∴原方程組的解為
(2)解:由①×2得,4+6=16③……變形方程,使得某個未知數(shù)的系數(shù)相等或互為相反數(shù);
由②-③得,11=22……消掉其中的一個未知數(shù),得到一元一次方程;
解得,=2……解一元一次方程求出其中一個未知數(shù)的值;
把=2代入方程①得,=1……把求出的未知數(shù)的值代入變形后的方程,求出另一個未知數(shù)的值
∴原方程組的解為x
(三)鞏固應(yīng)用:
例1、已知以、為未知數(shù)的方程組的方程組與的解相同,試求、的值。
解:解方程組,得
把代入方程組,得。
解得
例2(xxxx年xx中考題)、某班將舉行“慶祝建黨90周年知識競賽“活動,班長安排小明購買獎品,下面兩圖是小明買回獎品時與班長的對話情境:
請根據(jù)上面的信息.試計算兩種筆記本各買了多少本?
解:設(shè)購買單價為5元的筆記本本,單價為8元的筆記本本,依題意,得:
解得:
經(jīng)檢驗,符合題意。
∴購買單價為5元的筆記本25本,單價為8元的筆記本15本。
(四)能力提升:
例1、已知一次函數(shù)=+1與另一個一次函數(shù)=相交于點A,試求出點A的坐標。
解:依題意,得
解得:
∴點A的坐標為(3,-2).
例2.(20xx年xx中考模擬題)某旅游商品經(jīng)銷店欲購進A、B兩種紀念品,若用380元購進A種紀念品7件,B種紀念品8件;也可以用380元購進A種紀念品10件,B種紀念品6件。
(1)求A、B兩種紀念品的進價分別為多少?
(2)若該商店每銷售1件A種紀念品可獲利5元,每銷售1件B種紀念品可獲利7元,該商店準備用不超過900元購進A、B兩種紀念品40件,且這兩種紀念品全部售出候總獲利不低于216元,問應(yīng)該怎樣進貨,才能使總獲利最大,最大為多少?
解:(1)設(shè)A種紀念品的進價為元,B種紀念品的進價為元,依題意,得:
解得:x。
答:A、B兩種紀念品的進價分別為20元、30元
(2)設(shè)商店準備購進A種紀念品a件,則購進B種紀念品(40-a)件,依題意,得
解得:
∵總獲利是a的一次函數(shù),且w隨a的增大而減小
∴當a=30時,w最大,最大值w=-2×30+280=220.
∴40-a=10
∴應(yīng)進A種紀念品30件,B種紀念品10件,才能使獲得利潤最大,最大值是220元.
(五)課堂練習(xí):
1、解下例方程組:
2、若方程組的解為,試求、的值。
(六)家庭作業(yè):
1、必做題:指南第25頁A組2(2)、(3),4
2、選做題:指南第26頁B組2,3
【微語】簡單的事重復(fù)做,你就是專家;重復(fù)的事用心做,你就是贏家。